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ABSTRACT  

Force-directed algorithms are widely used for visualizing graphs. 

However, these algorithms are computationally expensive in producing 

good quality layouts for complex graphs. The layout quality is largely 

influenced by execution time and methodsô input parameters especially 

for large complex graphs. The snapshots of visualization generated 

from these algorithms are useful in presenting the current view or a 

past state of an information on timeslices. Therefore, researchers often 

need to make a trade-off between the quality of visualization and the 

selection of appropriate force-directed algorithms. In this paper, we 

evaluate the quality of snapshots generated from 7 force-directed 

algorithms in terms of number of edge crossing and the standard 

deviations of edge length. Our experimental results showed that KK, 

FA2 and DH algorithms cannot produce satisfactory visualizations for 

large graphs within the time limit . KK-MS-DS algorithm can process 

large and planar graphs but it does not perform well for graphs with 

low average degrees. KK-MS algorithm produces better visualizations 

for sparse and non-clustered graphs than KK-MS-DS algorithm.  

Keywords: Snapshot visualization, Time-constrained execution, 
Complex structured graphs, Force-directed algorithms. 

1 INTRODUCTION 

In recent years, there has been an intense research activity in graph 

visualization. A graph is worth a thousand words. Since any relational 

data could be presented by a graph, it is a popular way for presenting 

harvested information. Force-directed algorithms are widely used for 

graph visualization. They can produce visualizations purely based on 

the structure of a graph and do not require extra attributes. However, 

there are many types of graphs for different application domains, and 

each graph has its own unique characteristics such as average degree, 

density, the distribution of nodes, the distribution of edges, etc. The 

primary objective of the paper is to review and analyze the 

performance of available force-directed algorithms for graph 

visualization. The results obtained from this study can be used for 

further extending the force-directed algorithms for visualizing large 

complex graphs.  

In section 2, we review the related work. In section 3, we present the 

experiment settings for analyzing the performance of force-directed 

algorithms based on different benchmark datasets. In section 4, we 

compare the algorithms based on a set of attributes. Finally, in section 

5, we conclude the paper with future work.  

2 RELATED WORK 

Many force-directed algorithms have been proposed in recent years 

and there are studies discussed about the performance of these 

algorithms in graph visualization. Force-directed algorithms rely on 

spring forces. Forces between the nodes can be computed based on 

their graph theoretic distances, determined by the lengths of shortest 

paths between them. Repulsive forces and attractive forces are often 

used to generate aesthetically pleasing layouts. Graphs drawn with 

these algorithms tend to exhibit symmetries, and produce crossing-free 

layouts for planar graphs [1]. Classical force-directed algorithms 

include Kamada-Kawai (KK) algorithm [2], Davidson Harel (DH) 

algorithm [3] and Fruchterman Reingold (FR) algorithm [4]. B. Pajntar 

[5] defined basic properties of the graphs, the criterions of aesthetically 

pleasing presentation and the characteristics of classical force-directed 

algorithms. B. Pajntar also summarized aesthetically pleasing 

presentation of graph visualizations for human readability. Moreover, 

Brandenburg et al. [6] defined several criteria of aesthetically pleasing 

visualizations of graphs which include: (a) uniformity of the edge 

length, (b) uniformity of node distribution, (c) uniformity of edge 

crossings and (d) display of symmetries. Furthermore, Lipp et al. [7] 

implemented an extensions of FR algorithm and compare with existing 

algorithms with respect to the number of edge crossing, standard 

deviation of edge length and the execution time. 

3 FORCE-DIRECTED ALGORITHMS 

  In this section, we introduce seven force-directed algorithms 

implemented for our experiments: Kamada-Kawai (KK) algorithm [2], 

Kamada-Kawai with multi-node selection (KK-MS) algorithm [8], 

Kamada-Kawai with multiple node selection and decaying stiffness 

(KK-MS-DS) algorithm [8], Davidson Harel (DH) algorithm [3], 

Fruchterman Reingold (FR) algorithm [4], Fruchterman Reingold 

algorithm with range extension (FRR) [9] and ForceAtlas2 (FA2) 

algorithm [10]. 

3.1 Kamada -Kawai  (KK) algorithm  

The KK algorithm [2] is based on Eadesô spring-embedder model 

[11]. The main objective of the KK algorithm is to distribute the nodes 

and edges uniformly [12]. To achieve this objective, KK algorithm 

uses a spring model that minimises the energy function of the graph. 

The energy function of KK algorithm can be defined as follows: 
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where Ὧȟ is the stiffness of the spring between nodes Ὥ and Ὦ, ὴ 

and ὴ are the positions of nodes Ὥ and Ὦ in the visualization and 

ὰȟ is the ideal spring distance between nodes Ὥ and Ὦ. The KK 

algorithm calculates the positions for each pair of nodes, Ὥ and Ὦ. In 

the visualization, the Euclidean distance of the pair is proportional to 

ὰȟ.  

3.2 Kamada -Kawai with multi -node selection  (KK-MS) 
algorithm  

The KK algorithm selects and updates a node (with maximum 

change Ў ) per iteration. As updating is done one node at a time in the 

KK algorithm, more iterations are needed when the topology is large, 

and thus it takes longer to execute. Therefore, KK-MS algorithm 

inserts the top-Ὧ nodes into an ordered queue. Next, KK-MS algorithm 
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pops up the top-Ὧ nodes having highest maximum change Ў  from 

the order queue and updates the nodesô visual positions and 

corresponding maximum change Ў  values. After that, the 

algorithm inserts them back into the queue for the next iteration. After 

Ѝὲ distinct nodes have been selected for updating their visual 

positions, KK-MS algorithm clears the ordered queue. When a new 

ordered queue is created, the KK-MS algorithm recalculates the 

maximum change Ў  of the nodes from the graph. This process 

repeats until the termination conditions are met. The time complexity 

of KK-MS algorithm is ὕὲ ὠ ὺ , where ὲ is the number of 

iteration, ὠ is the number of nodes in the given graph, and ὺ is the 

number of nodes in the ordered queue.  

3.3 Kamada -Kawai with multi -node selection and 
decaying stiffness (KK -MS-DS) algorithm  

The KK algorithm with multi-node selection and decaying stiffness 

(KK-MS-DS) [8] includes heuristics to achieve faster energy level 

reduction. The KK-MS-DS algorithm selects nodes with the highest 

average degrees to be the starting points. Next, the KK-MS-DS 

algorithm collects all two-hop nodes and constructs an initial starting 

area. Moreover, KK-MS-DS algorithm adopts the heuristics from the 

KK-MS algorithm that update a group of Ὧ nodes in every iteration, 

thereby speeding up the updating procedure for the graph. The 

KK-MS-DS algorithm also uses a decaying stiffness to improve the 

selection of nodes. That is, the higher the decay rate, the more likely 

the node is to be selected for the next iteration. In addition, the 

KK-MS-DS algorithm expands the starting area by checking the stable 

status ὶ. A stable status implies that a coarse visualization of the 

starting area has been constructed, but the final stage of the entire 

graph has not been reached. The ratio of the stable status ὶ of the 

starting area is given by: 
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where ὰ is the total number of edges in the graph, ὒ is the edge 

length of the current iteration, and ὒ is the edge length of the input 

graph. If the stable status is lower than the threshold ‐ for a predefined 

number of iterations, KK-MS-DS algorithm adds outside nodes from 

the neighbouring area into the starting area.  

 

3.4 Davidson Harel (DH) algorithm  
The DH algorithm [3] uses a simulated annealing process to produce 

a visualization in which the nodes are distributed evenly. It is based on 

the physical annealing process in which liquids are cooled into a 

crystalline form. This algorithm also prevents nodes from moving too 

close to non-adjacent edges. An energy value Ὁ, attraction force Ὢ 

and the repulsion force Ὢ are used in the simulated annealing process. 

The energy value Ὁ is the sum of all attraction forces and repulsion 

forces which can be calculated as follows: 
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where Ὥ and Ὦ are nodes and ὼ and ώ are coordinates of the node 

Ὥ. The attraction force Ὢ and the repulsion force Ὢ can be calculated 

based on equations (6) and (7). 

A node Ὥ is randomly selected from the graph on initialization. DH 

algorithm then creates a temporary node Ὦ, and assigns a position to 

the node based on the position of node Ὥ. Therefore, a new energy 

value Ὁ can be calculated using the position of node Ὦ and the other 

nodes within the graph. 
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where Ὥ, Ὦ and ὺ are nodes and ὼ and ώ are coordinates of 

the node Ὥ. The attraction force Ὢ and the repulsion force Ὢ can be 

calculated based on equations (6) and (7). If Ὁ Ὁ π then Ὁ is 

used as the energy of the next iteration because Ὁ has lower energy 

value. If Ὁ Ὁ π, the DH algorithm uses the Boltzmann 

distribution [13] to determine whether to use the new energy Ὁ in the 

next iteration. The probability is defined as follows:  
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where Ὧ is the Boltzmann constant and Ὕ is the temperature variable. 

If ὴ is less than the threshold •, then the new energy Ὁ is accepted; 

otherwise, the old energy Ὁ will be used in the next iteration.  

 

3.5 Fruchterman Reingold (FR) Algorithm  
The FR [4] algorithm distributes nodes evenly while maintains 

uniform edge lengths. The FR algorithm uses two forces (attraction and 

repulsion) to calculate the positions of the nodes, rather than using an 

energy function with a theoretical graph distance. The attraction force 

Ὢ  and repulsion force Ὢ  are defined as follows: 
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where Ὠ is the distance between two nodes and Ὧ is the constant of 

ideal pairwise distance.   

3.6 Fruchterman Reingold algorithm with range 
extension (FRR)  

FRR algorithm is based on the FR [4] algorithm, but uses a different 

definition of the ideal pairwise distance Ὧ. FR algorithm uses an 

identical ideal pairwise distance Ὧ for all edges. FRR algorithm uses 

the same definitions of the attraction Ὢ  and repulsion Ὢ  forces 

as the FR algorithm. However, FRR algorithm defines Ὧ as the 

distance between corresponding pairs of nodes which can be derived 

from the weight of links or from the time-of-arrival data [9]. FRR 

algorithm sometimes fails to generate an acceptable visualization of the 

given topology as illustrated in Figure 1 (a). If the distribution of the 

edges is not planar, then many nodes could be stacked together at the 

centre of the canvas. These distortions are often caused by the 

attraction force used in the FR algorithm. To alleviate this problem, 

Efrat et al. [9] proposed a modified version of the attraction force. 

Using this modified attraction force, nodes can be pulled away from 

the centre, as illustrated in Figure 1 (b). The enhanced attraction force 

Ὢ  is defined as follows: 
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where and Ὧ is the ideal pairwise distance and Ὠ is the distance 

between node ὲ and node ὲ  



  

(a)   (b) 

Figure 1 (a) Visualization generated by FRR algorithm, (b) Visualization 
generated by FRR algorithm with modified attraction force. 

3.7 ForceAtlas2 (FA2) algorithm  

FA2 [10] algorithm which is based on FR algorithm introduces new 

models of attraction, repulsion, and gravity forces. These models are 

designed to produces a planer visualization of the graph, yet minimises 

edge crossing. Firstly, Jacomy et al. [10] used a modified LinLog 

model as an extension of the attraction model in the FA2 algorithm. 

The LinLog model was proposed by Andreas Noack [14]. The LinLog 

model emphasises the visualization of clusters in a graph and tightens 

those clusters. The modified LinLog model used in the FA2 algorithm 

is defined as follows: 
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where Ὠ is the distance between nodes ὲ and ὲ.  

Jacomy et al. [10] proposed a degree-dependent repulsion  model 

for the FA2 algorithm that balance the distance between nodes with 

higher average degrees and nodes with lower average degrees. This 

repulsion model increases the chances of nodes with lower average 

degrees connecting to nodes with higher average degrees. The 

degree-dependent repulsion model Ὂ used in the FA2 algorithm is 

defined as follows: 
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where Ὠ is the distance between nodes ὲ and ὲ, ὨὩὫὲ is the 

number of edges associated with the node ὲȟ including in- and 

out-degree edges and Ὧ is a constant of ideal pairwise distance, as 

used in the FR algorithm. Besides, FA2 algorithm adds the two 

gravitational forces: gravity and strong gravity. The purpose of the 

gravity model is to compensate for the repulsion of nodes, and prevents 

disconnected nodes from drifting away from the centre of the canvas.  

Jacomy et al. [10] stated that gravity can sometimes be stronger than 

the attraction and repulsion forces. When the strong gravity model is 

used in uniform graphs, the nodes can be stacked together. Jacomy et al. 

[10] also concluded that strong gravity may be useful only for specific 

types of graphs. The gravity and strong gravity models used in the FA2 

algorithm are defined as follows: 
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where Ὧ is a constant of ideal pairwise distance, ὨὩὫὲ is the 

number of edges associated with the node ὲ including in-degree and 

out-degree edges, and Ὠὲ is the distance from node ὲ to the central 

point of the canvas.  

 

4 EXPERIMENT SETTING 

The experiments were performed on an Intel Core i5 CPU with 4 

cores, 1.8 GHz and 16 GB RAM running Windows 7. We and 

implemented all the algorithms in Java and JUNG framework [15]. We 

implemented seven force-directed algorithms for our experiment. They 

are Kamada-Kawai (KK) algorithm [2], Kamada-Kawai with 

multi-node selection (KK-MS) algorithm [8], Kamada-Kawai with 

multiple node selection and decaying stiffness (KK-MS-DS) algorithm 

[8], Davidson Harel (DH) algorithm [3], Fruchterman Reingold (FR) 

algorithm [4], Fruchterman Reingold algorithm with range extension 

(FRR) [9] and ForceAtlas2 (FA2) algorithm [10].  

Our implementations of the algorithms use the same termination 

criterion. That is, each algorithm terminates when the maximum 

execution time exceeds 30 minutes. We do not use the maximum 

iterations for termination criterion because the execution time of an 

iteration is different in each algorithm. We measured the quality of the 

visualization (i.e. good visualization) by (a) the number of edge 

crossings, (b) the standard deviation of the edge lengths. These criteria 

have been used by other studies to compare the visualization of 

force-directed algorithms [5-7, 16]. We tested our algorithms on six 

benchmark data sets which include planar, convex, non-convex, high 

density degree and non-uniform graphs. The topology information of 

the data sets is shown in Table 1. These data sets can be downloaded 

from [17] and they are frequently used in the studies of graph 

visualization by force-directed algorithms [7, 18-22]. 

 

Table 1. Dataset of experiments 

Dataset Nodes Edges Avg. degree 

crack 10240 30380 5.93 

flower_005 930 13521 29.08 

grid_rnd_100 9497 17849 3.76 

sierpinski_06 1095 2187 3.99 

snowflake_B 971 970 2 

tree_06_03 259 258 1.99 

5 RESULTS 

We first compared the number of edge crossings produced by the 

algorithms. The experimental results are shown in Figure 2. According 

to results, the data set ὧὶὥὧὯ has the largest number of edge crossings 

and the data set ὸὶὩὩπͅφͅπσ has the lowest number of edge crossings 

among different algorithms. Specifically, the average number of edge 

crossings in FA2, FRR, DH, FR, KK, KK-DS, KK-MS-DS algorithms 

are 10803.83, 9694.66, 10754.5, 9603.16, 10227.5, 8378.66, 6337.33 

with respect to each data set. From these results, we can observe that 

KK-MS-DS algorithm achieves the lowest number of edge crossings 

and FA2 algorithm obtains the highest number of edge crossings. 

 

 

Figure 2 Number of edge crossing for each algorithm 

In addition, we compared the standard deviation of edge length in 

each force-directed algorithmôs visualization. The experimental results 

are illustrated in Figure 3. The standard deviation of edge length of 

FA2, FRR, DH, FR, KK, KK-DS, KK-MS-DS algorithms are 7.53, 



66.69, 104.68, 78.22, 144.56, 12.53, 225.75 with respect to each the 

data set. We can notice that standard deviation of some the algorithms 

are quite small. A low standard deviation indicates that the nodes are 

stacked if the large number of nodes in the snapshot (e.g. FA2 

algorithm), while a high standard deviation indicates that the length of 

edge are spread out (e.g. KK-MS-DS algorithm).  

 

Figure 3 Standard deviation of the edge for each force-directed algorithm 

 
5.1 Visualization of force -directed algorithms  

In our experiments, the force-directed algorithms are designed to 

terminate when the execution time exceeds 30 minutes. To better 

understand the performance of each algorithm, we capture the snapshot 

of each force-directed algorithm at 10 minutes, 20 minutes and 30 

minutes intervals. 

From the snapshots, we can observe that although the standard 

deviation of FA2 algorithm is smaller than other algorithms, the actual 

visualization does not produce a pleasing graph layout as expected and 

nodes are stacked each other in the final results. This situation is 

illustrated in Table 2. 

Table 2. The snapshots of visualization byFA2 algorithm. 

Dataset Snapshot 

10 

minutes 

20 

minutes 

30 

minutes 

crack 

   
flower_005 

   
grid_rnd_100 

   
sierpinski_06 

   
snowflake_B 

   
tree_06_03 

   
    

 

FRR algorithm cannot produces pleasing visualizations for large 

graphs associated with the data sets ὧὶὥὧὯ and ὫὶὭὨὶͅὲᾨρππ 
because FRR algorithms need more iterations for large graphs, and 

thus 30 minutes execution time is still not sufficient under such 

settings. Besides, the output visualizations for the data sets 

ὸὶὩὩπͅφͅπσ and ίὭὩὶὴὭὲίὯὭπͅφ do not expand uniformly and some 

areas of the graphs are twisted and some of the nodes are stacked. This 

situation is illustrated in Table 3. 

Table 3. The snapshots of visualization by FRR algorithm. 

Dataset Snapshot 

10 minutes 20 minutes 30 minutes 

crack  
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DH algorithm is similar to the FRR algorithm (see Table 4). As 

expected, the algorithm cannot produce pleasing visualizations for 

large graphs. Besides, DH algorithm does not produce the pleasing 

visualizations for the datasets except for the ὪὰέύὩὶπͅπυ data set. In 

addition, the visualizations are neither uniform nor symmetric. 

Table 4. The snapshots of visualization by DH algorithm. 

Dataset Snapshot 

10 minutes 20 minutes 30 minutes 

crack  

 

 

 

 

 
 

flower_00

5 

 
 

 
grid_rnd_1

00 

  
 

sierpinski_

06 

   



snowflake

_B 

  

 
tree_06_0

3 

   
 

FR algorithm produces better visualizations for data sets ὧὶὥὧὯ and 

ὫὶὭὨὶͅὲᾨρππ. From the snapshots, we can also observe that  

although some nodes have been expanded by the algorithm, the entire 

graph is not completely unfolded. However, the visualization of 

datasets ὪὰέύὩὶπͅπυ, ίὭὩὶὴὭὲίὯὭπͅφ and ίὲέύὪὰὥὯὩὄͅ are quite 

poor and FR algorithm could not recover the layout as the FRR 

algorithm did. This situation is illustrated in Table 5. 

Table 5. The snapshots of visualization by FR algorithm. 

Dataset Snapshot 

10 minutes 20 minutes 30 minutes 
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KK algorithm cannot produce pleasing visualizations for large graphs 

such as data sets ὧὶὥὧὯ and ὫὶὭὨὶͅὲᾨρππ as illustrated in Table 6. 

Moreover, KK algorithm cannot effectively generate the visualizations 

for dataset ὸὶὩὩπͅφͅπσ. Although the output visualization is 

symmetric and uniform, the visualization does not look like a tree. 

 
Table 6. The snapshot of visualizations by KK algorithm. 

Dataset Snapshot 

10 minutes 20 minutes 30 minutes 
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KK-MS algorithm produces pleasing visualizations for datasets 

ίὭὩὶὴὭὲίὯὭπͅφ and ίὲέύὪὰὥὯὩὄͅ. In addition, some nodes are 

unfolded in datasets ὧὶὥὧὯ and ὫὶὭὨὶͅὲᾨρππ. Similar to the KK 

algorithm, KK-MS algorithm cannot effectively generate the 

visualizations for the dataset ὸὶὩὩπͅφͅπσ. This situation is illustrated 

in Table 7. 

Table 7. The snapshots of visualization by KK-MS algorithm. 

Dataset Snapshot 

10 minutes 20 minutes 30 minutes 

crack  

 

 

 

 

 

flower_0

05 

  
 

grid_rnd_

100 

   
    

    

sierpinski

_06 

   


