

Author's Post -Print (final draft post -refereeing)

NOTICE: this is the authorôs version of a work that was
accepted for publication in 2018 IEEE International
Conference on Big Knowledge (ICBK). Changes resulting
from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for
publication. A definitive version was subsequently published
in 2018 IEEE International Conference on Big Knowledge
(ICBK) (pp. 139-145).
https://ieeexplore.ieee.org/abstract/document/8588785

Snapshot Visualization of Complex Graphs with Force-directed

Algorithms

Se-Hang Cheong
Department of Computer and Information Science,

University of Macau
dit.dhc@lostcity-studio.com

Yain-Whar Si
Department of Computer and Information Science,

University of Macau
fstasp@umac.mo

ABSTRACT

Force-directed algorithms are widely used for visualizing graphs.

However, these algorithms are computationally expensive in producing

good quality layouts for complex graphs. The layout quality is largely

influenced by execution time and methodsô input parameters especially

for large complex graphs. The snapshots of visualization generated

from these algorithms are useful in presenting the current view or a

past state of an information on timeslices. Therefore, researchers often

need to make a trade-off between the quality of visualization and the

selection of appropriate force-directed algorithms. In this paper, we

evaluate the quality of snapshots generated from 7 force-directed

algorithms in terms of number of edge crossing and the standard

deviations of edge length. Our experimental results showed that KK,

FA2 and DH algorithms cannot produce satisfactory visualizations for

large graphs within the time limit . KK-MS-DS algorithm can process

large and planar graphs but it does not perform well for graphs with

low average degrees. KK-MS algorithm produces better visualizations

for sparse and non-clustered graphs than KK-MS-DS algorithm.

Keywords: Snapshot visualization, Time-constrained execution,
Complex structured graphs, Force-directed algorithms.

1 INTRODUCTION

In recent years, there has been an intense research activity in graph

visualization. A graph is worth a thousand words. Since any relational

data could be presented by a graph, it is a popular way for presenting

harvested information. Force-directed algorithms are widely used for

graph visualization. They can produce visualizations purely based on

the structure of a graph and do not require extra attributes. However,

there are many types of graphs for different application domains, and

each graph has its own unique characteristics such as average degree,

density, the distribution of nodes, the distribution of edges, etc. The

primary objective of the paper is to review and analyze the

performance of available force-directed algorithms for graph

visualization. The results obtained from this study can be used for

further extending the force-directed algorithms for visualizing large

complex graphs.

In section 2, we review the related work. In section 3, we present the

experiment settings for analyzing the performance of force-directed

algorithms based on different benchmark datasets. In section 4, we

compare the algorithms based on a set of attributes. Finally, in section

5, we conclude the paper with future work.

2 RELATED WORK

Many force-directed algorithms have been proposed in recent years

and there are studies discussed about the performance of these

algorithms in graph visualization. Force-directed algorithms rely on

spring forces. Forces between the nodes can be computed based on

their graph theoretic distances, determined by the lengths of shortest

paths between them. Repulsive forces and attractive forces are often

used to generate aesthetically pleasing layouts. Graphs drawn with

these algorithms tend to exhibit symmetries, and produce crossing-free

layouts for planar graphs [1]. Classical force-directed algorithms

include Kamada-Kawai (KK) algorithm [2], Davidson Harel (DH)

algorithm [3] and Fruchterman Reingold (FR) algorithm [4]. B. Pajntar

[5] defined basic properties of the graphs, the criterions of aesthetically

pleasing presentation and the characteristics of classical force-directed

algorithms. B. Pajntar also summarized aesthetically pleasing

presentation of graph visualizations for human readability. Moreover,

Brandenburg et al. [6] defined several criteria of aesthetically pleasing

visualizations of graphs which include: (a) uniformity of the edge

length, (b) uniformity of node distribution, (c) uniformity of edge

crossings and (d) display of symmetries. Furthermore, Lipp et al. [7]

implemented an extensions of FR algorithm and compare with existing

algorithms with respect to the number of edge crossing, standard

deviation of edge length and the execution time.

3 FORCE-DIRECTED ALGORITHMS

 In this section, we introduce seven force-directed algorithms

implemented for our experiments: Kamada-Kawai (KK) algorithm [2],

Kamada-Kawai with multi-node selection (KK-MS) algorithm [8],

Kamada-Kawai with multiple node selection and decaying stiffness

(KK-MS-DS) algorithm [8], Davidson Harel (DH) algorithm [3],

Fruchterman Reingold (FR) algorithm [4], Fruchterman Reingold

algorithm with range extension (FRR) [9] and ForceAtlas2 (FA2)

algorithm [10].

3.1 Kamada -Kawai (KK) algorithm

The KK algorithm [2] is based on Eadesô spring-embedder model

[11]. The main objective of the KK algorithm is to distribute the nodes

and edges uniformly [12]. To achieve this objective, KK algorithm

uses a spring model that minimises the energy function of the graph.

The energy function of KK algorithm can be defined as follows:

 %
ρ

ς
Ëȟ Ð Ð Ìȟ (1)

where Ὧȟ is the stiffness of the spring between nodes Ὥ and Ὦ, ὴ

and ὴ are the positions of nodes Ὥ and Ὦ in the visualization and

ὰȟ is the ideal spring distance between nodes Ὥ and Ὦ. The KK

algorithm calculates the positions for each pair of nodes, Ὥ and Ὦ. In

the visualization, the Euclidean distance of the pair is proportional to

ὰȟ.

3.2 Kamada -Kawai with multi -node selection (KK-MS)
algorithm

The KK algorithm selects and updates a node (with maximum

change Ў) per iteration. As updating is done one node at a time in the

KK algorithm, more iterations are needed when the topology is large,

and thus it takes longer to execute. Therefore, KK-MS algorithm

inserts the top-Ὧ nodes into an ordered queue. Next, KK-MS algorithm

mailto:fstasp@umac.mo

pops up the top-Ὧ nodes having highest maximum change Ў from

the order queue and updates the nodesô visual positions and

corresponding maximum change Ў values. After that, the

algorithm inserts them back into the queue for the next iteration. After

Ѝὲ distinct nodes have been selected for updating their visual

positions, KK-MS algorithm clears the ordered queue. When a new

ordered queue is created, the KK-MS algorithm recalculates the

maximum change Ў of the nodes from the graph. This process

repeats until the termination conditions are met. The time complexity

of KK-MS algorithm is ὕὲ ὠ ὺ , where ὲ is the number of

iteration, ὠ is the number of nodes in the given graph, and ὺ is the

number of nodes in the ordered queue.

3.3 Kamada -Kawai with multi -node selection and
decaying stiffness (KK -MS-DS) algorithm

The KK algorithm with multi-node selection and decaying stiffness

(KK-MS-DS) [8] includes heuristics to achieve faster energy level

reduction. The KK-MS-DS algorithm selects nodes with the highest

average degrees to be the starting points. Next, the KK-MS-DS

algorithm collects all two-hop nodes and constructs an initial starting

area. Moreover, KK-MS-DS algorithm adopts the heuristics from the

KK-MS algorithm that update a group of Ὧ nodes in every iteration,

thereby speeding up the updating procedure for the graph. The

KK-MS-DS algorithm also uses a decaying stiffness to improve the

selection of nodes. That is, the higher the decay rate, the more likely

the node is to be selected for the next iteration. In addition, the

KK-MS-DS algorithm expands the starting area by checking the stable

status ὶ. A stable status implies that a coarse visualization of the

starting area has been constructed, but the final stage of the entire

graph has not been reached. The ratio of the stable status ὶ of the

starting area is given by:

 ὶ

ρ
ὰ
В ὒ ὒ

В ὒ
ρ
ὰ
В ὒ ὒ

(2)

where ὰ is the total number of edges in the graph, ὒ is the edge

length of the current iteration, and ὒ is the edge length of the input

graph. If the stable status is lower than the threshold ‐ for a predefined

number of iterations, KK-MS-DS algorithm adds outside nodes from

the neighbouring area into the starting area.

3.4 Davidson Harel (DH) algorithm
The DH algorithm [3] uses a simulated annealing process to produce

a visualization in which the nodes are distributed evenly. It is based on

the physical annealing process in which liquids are cooled into a

crystalline form. This algorithm also prevents nodes from moving too

close to non-adjacent edges. An energy value Ὁ, attraction force Ὢ

and the repulsion force Ὢ are used in the simulated annealing process.

The energy value Ὁ is the sum of all attraction forces and repulsion

forces which can be calculated as follows:

Ὁ

Ὢὥ ὼὭ ὼὮ
ς

ώὭ ώὮ
ς

ὲ

ὮὭρ

ὲ ρ

Ὥρ

Ὢὶ ὼὭ ὼὮ
ς

ώὭ ώὮ
ς

(3)

where Ὥ and Ὦ are nodes and ὼ and ώ are coordinates of the node

Ὥ. The attraction force Ὢ and the repulsion force Ὢ can be calculated

based on equations (6) and (7).

A node Ὥ is randomly selected from the graph on initialization. DH

algorithm then creates a temporary node Ὦ, and assigns a position to

the node based on the position of node Ὥ. Therefore, a new energy

value Ὁ can be calculated using the position of node Ὦ and the other

nodes within the graph.

Ὁ

Ὢὥ ὼὺ ὼὮ
ς

ώὺ ώὮ
ς

ὺȟὭɴὠȟὮɵὠȟὺὭ

Ὢὶ ὼὺ ὼὮ
ς

ώὺ ώὮ
ς

(4)

where Ὥ, Ὦ and ὺ are nodes and ὼ and ώ are coordinates of

the node Ὥ. The attraction force Ὢ and the repulsion force Ὢ can be

calculated based on equations (6) and (7). If Ὁ Ὁ π then Ὁ is

used as the energy of the next iteration because Ὁ has lower energy

value. If Ὁ Ὁ π, the DH algorithm uses the Boltzmann

distribution [13] to determine whether to use the new energy Ὁ in the

next iteration. The probability is defined as follows:

ὴ Ὡ (5)

where Ὧ is the Boltzmann constant and Ὕ is the temperature variable.

If ὴ is less than the threshold •, then the new energy Ὁ is accepted;

otherwise, the old energy Ὁ will be used in the next iteration.

3.5 Fruchterman Reingold (FR) Algorithm
The FR [4] algorithm distributes nodes evenly while maintains

uniform edge lengths. The FR algorithm uses two forces (attraction and

repulsion) to calculate the positions of the nodes, rather than using an

energy function with a theoretical graph distance. The attraction force

Ὢ and repulsion force Ὢ are defined as follows:

 ὪὨ
Ὠ

Ὧ

(6)

 ὪὨ
Ὧ

Ὠ

(7)

where Ὠ is the distance between two nodes and Ὧ is the constant of

ideal pairwise distance.

3.6 Fruchterman Reingold algorithm with range
extension (FRR)

FRR algorithm is based on the FR [4] algorithm, but uses a different

definition of the ideal pairwise distance Ὧ. FR algorithm uses an

identical ideal pairwise distance Ὧ for all edges. FRR algorithm uses

the same definitions of the attraction Ὢ and repulsion Ὢ forces

as the FR algorithm. However, FRR algorithm defines Ὧ as the

distance between corresponding pairs of nodes which can be derived

from the weight of links or from the time-of-arrival data [9]. FRR

algorithm sometimes fails to generate an acceptable visualization of the

given topology as illustrated in Figure 1 (a). If the distribution of the

edges is not planar, then many nodes could be stacked together at the

centre of the canvas. These distortions are often caused by the

attraction force used in the FR algorithm. To alleviate this problem,

Efrat et al. [9] proposed a modified version of the attraction force.

Using this modified attraction force, nodes can be pulled away from

the centre, as illustrated in Figure 1 (b). The enhanced attraction force

Ὢ is defined as follows:

 Ὢὲȟὲ
Ὠὲȟὲ

Ὧ
 (8)

where and Ὧ is the ideal pairwise distance and Ὠ is the distance

between node ὲ and node ὲ

(a) (b)

Figure 1 (a) Visualization generated by FRR algorithm, (b) Visualization
generated by FRR algorithm with modified attraction force.

3.7 ForceAtlas2 (FA2) algorithm

FA2 [10] algorithm which is based on FR algorithm introduces new

models of attraction, repulsion, and gravity forces. These models are

designed to produces a planer visualization of the graph, yet minimises

edge crossing. Firstly, Jacomy et al. [10] used a modified LinLog

model as an extension of the attraction model in the FA2 algorithm.

The LinLog model was proposed by Andreas Noack [14]. The LinLog

model emphasises the visualization of clusters in a graph and tightens

those clusters. The modified LinLog model used in the FA2 algorithm

is defined as follows:

Ὂ ὲȟὲ ὰέὫρ Ὠὲȟὲ

(9)

where Ὠ is the distance between nodes ὲ and ὲ.

Jacomy et al. [10] proposed a degree-dependent repulsion model

for the FA2 algorithm that balance the distance between nodes with

higher average degrees and nodes with lower average degrees. This

repulsion model increases the chances of nodes with lower average

degrees connecting to nodes with higher average degrees. The

degree-dependent repulsion model Ὂ used in the FA2 algorithm is

defined as follows:

 Ὂὲȟὲ Ὧ
ÄÅÇὲ ρ ÄÅÇὲ ρ

Ὠὲȟὲ
 (10)

where Ὠ is the distance between nodes ὲ and ὲ, ὨὩὫὲ is the

number of edges associated with the node ὲȟ including in- and

out-degree edges and Ὧ is a constant of ideal pairwise distance, as

used in the FR algorithm. Besides, FA2 algorithm adds the two

gravitational forces: gravity and strong gravity. The purpose of the

gravity model is to compensate for the repulsion of nodes, and prevents

disconnected nodes from drifting away from the centre of the canvas.

Jacomy et al. [10] stated that gravity can sometimes be stronger than

the attraction and repulsion forces. When the strong gravity model is

used in uniform graphs, the nodes can be stacked together. Jacomy et al.

[10] also concluded that strong gravity may be useful only for specific

types of graphs. The gravity and strong gravity models used in the FA2

algorithm are defined as follows:

 Ὂ ὲ Ὧ ὨὩὫὲ ρ (11)

 Ὂ ὲ Ὧ ὨὩὫὲ ρ Ὠὲ (12)

where Ὧ is a constant of ideal pairwise distance, ὨὩὫὲ is the

number of edges associated with the node ὲ including in-degree and

out-degree edges, and Ὠὲ is the distance from node ὲ to the central

point of the canvas.

4 EXPERIMENT SETTING

The experiments were performed on an Intel Core i5 CPU with 4

cores, 1.8 GHz and 16 GB RAM running Windows 7. We and

implemented all the algorithms in Java and JUNG framework [15]. We

implemented seven force-directed algorithms for our experiment. They

are Kamada-Kawai (KK) algorithm [2], Kamada-Kawai with

multi-node selection (KK-MS) algorithm [8], Kamada-Kawai with

multiple node selection and decaying stiffness (KK-MS-DS) algorithm

[8], Davidson Harel (DH) algorithm [3], Fruchterman Reingold (FR)

algorithm [4], Fruchterman Reingold algorithm with range extension

(FRR) [9] and ForceAtlas2 (FA2) algorithm [10].

Our implementations of the algorithms use the same termination

criterion. That is, each algorithm terminates when the maximum

execution time exceeds 30 minutes. We do not use the maximum

iterations for termination criterion because the execution time of an

iteration is different in each algorithm. We measured the quality of the

visualization (i.e. good visualization) by (a) the number of edge

crossings, (b) the standard deviation of the edge lengths. These criteria

have been used by other studies to compare the visualization of

force-directed algorithms [5-7, 16]. We tested our algorithms on six

benchmark data sets which include planar, convex, non-convex, high

density degree and non-uniform graphs. The topology information of

the data sets is shown in Table 1. These data sets can be downloaded

from [17] and they are frequently used in the studies of graph

visualization by force-directed algorithms [7, 18-22].

Table 1. Dataset of experiments

Dataset Nodes Edges Avg. degree

crack 10240 30380 5.93

flower_005 930 13521 29.08

grid_rnd_100 9497 17849 3.76

sierpinski_06 1095 2187 3.99

snowflake_B 971 970 2

tree_06_03 259 258 1.99

5 RESULTS

We first compared the number of edge crossings produced by the

algorithms. The experimental results are shown in Figure 2. According

to results, the data set ὧὶὥὧὯ has the largest number of edge crossings

and the data set ὸὶὩὩπͅφͅπσ has the lowest number of edge crossings

among different algorithms. Specifically, the average number of edge

crossings in FA2, FRR, DH, FR, KK, KK-DS, KK-MS-DS algorithms

are 10803.83, 9694.66, 10754.5, 9603.16, 10227.5, 8378.66, 6337.33

with respect to each data set. From these results, we can observe that

KK-MS-DS algorithm achieves the lowest number of edge crossings

and FA2 algorithm obtains the highest number of edge crossings.

Figure 2 Number of edge crossing for each algorithm

In addition, we compared the standard deviation of edge length in

each force-directed algorithmôs visualization. The experimental results

are illustrated in Figure 3. The standard deviation of edge length of

FA2, FRR, DH, FR, KK, KK-DS, KK-MS-DS algorithms are 7.53,

66.69, 104.68, 78.22, 144.56, 12.53, 225.75 with respect to each the

data set. We can notice that standard deviation of some the algorithms

are quite small. A low standard deviation indicates that the nodes are

stacked if the large number of nodes in the snapshot (e.g. FA2

algorithm), while a high standard deviation indicates that the length of

edge are spread out (e.g. KK-MS-DS algorithm).

Figure 3 Standard deviation of the edge for each force-directed algorithm

5.1 Visualization of force -directed algorithms

In our experiments, the force-directed algorithms are designed to

terminate when the execution time exceeds 30 minutes. To better

understand the performance of each algorithm, we capture the snapshot

of each force-directed algorithm at 10 minutes, 20 minutes and 30

minutes intervals.

From the snapshots, we can observe that although the standard

deviation of FA2 algorithm is smaller than other algorithms, the actual

visualization does not produce a pleasing graph layout as expected and

nodes are stacked each other in the final results. This situation is

illustrated in Table 2.

Table 2. The snapshots of visualization byFA2 algorithm.

Dataset Snapshot

10

minutes

20

minutes

30

minutes

crack

flower_005

grid_rnd_100

sierpinski_06

snowflake_B

tree_06_03

FRR algorithm cannot produces pleasing visualizations for large

graphs associated with the data sets ὧὶὥὧὯ and ὫὶὭὨὶͅὲᾨρππ
because FRR algorithms need more iterations for large graphs, and

thus 30 minutes execution time is still not sufficient under such

settings. Besides, the output visualizations for the data sets

ὸὶὩὩπͅφͅπσ and ίὭὩὶὴὭὲίὯὭπͅφ do not expand uniformly and some

areas of the graphs are twisted and some of the nodes are stacked. This

situation is illustrated in Table 3.

Table 3. The snapshots of visualization by FRR algorithm.

Dataset Snapshot

10 minutes 20 minutes 30 minutes

crack

flower_00

5

grid_rnd_

100

sierpinski

_06

snowflake

_B

tree_06_0

3

DH algorithm is similar to the FRR algorithm (see Table 4). As

expected, the algorithm cannot produce pleasing visualizations for

large graphs. Besides, DH algorithm does not produce the pleasing

visualizations for the datasets except for the ὪὰέύὩὶπͅπυ data set. In

addition, the visualizations are neither uniform nor symmetric.

Table 4. The snapshots of visualization by DH algorithm.

Dataset Snapshot

10 minutes 20 minutes 30 minutes

crack

flower_00

5

grid_rnd_1

00

sierpinski_

06

snowflake

_B

tree_06_0

3

FR algorithm produces better visualizations for data sets ὧὶὥὧὯ and

ὫὶὭὨὶͅὲᾨρππ. From the snapshots, we can also observe that

although some nodes have been expanded by the algorithm, the entire

graph is not completely unfolded. However, the visualization of

datasets ὪὰέύὩὶπͅπυ, ίὭὩὶὴὭὲίὯὭπͅφ and ίὲέύὪὰὥὯὩὄͅ are quite

poor and FR algorithm could not recover the layout as the FRR

algorithm did. This situation is illustrated in Table 5.

Table 5. The snapshots of visualization by FR algorithm.

Dataset Snapshot

10 minutes 20 minutes 30 minutes

crack

flower_00

5

grid_rnd_1

00

sierpinski_

06

snowflake

_B

tree_06_0

3

KK algorithm cannot produce pleasing visualizations for large graphs

such as data sets ὧὶὥὧὯ and ὫὶὭὨὶͅὲᾨρππ as illustrated in Table 6.

Moreover, KK algorithm cannot effectively generate the visualizations

for dataset ὸὶὩὩπͅφͅπσ. Although the output visualization is

symmetric and uniform, the visualization does not look like a tree.

Table 6. The snapshot of visualizations by KK algorithm.

Dataset Snapshot

10 minutes 20 minutes 30 minutes

crack

flower_0

05

grid_rnd_

100

sierpinski

_06

snowflak

e_B

tree_06_

03

KK-MS algorithm produces pleasing visualizations for datasets

ίὭὩὶὴὭὲίὯὭπͅφ and ίὲέύὪὰὥὯὩὄͅ. In addition, some nodes are

unfolded in datasets ὧὶὥὧὯ and ὫὶὭὨὶͅὲᾨρππ. Similar to the KK

algorithm, KK-MS algorithm cannot effectively generate the

visualizations for the dataset ὸὶὩὩπͅφͅπσ. This situation is illustrated

in Table 7.

Table 7. The snapshots of visualization by KK-MS algorithm.

Dataset Snapshot

10 minutes 20 minutes 30 minutes

crack

flower_0

05

grid_rnd_

100

sierpinski

_06

