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ABSTRACT

Forcedirected algorithmsare widely used for visualizingyrapts.
However, thesealgorithmsare computationally expensive fimoducing
good quality layouts for complexgraphs Thelayout quality islargely
influencedby execution timea n d me t h padasétersispegallyt
for large complex graphsThe snapshot®f visualization generated
from these algorithms are useful presenting the current view or a
past state of an informatiaim timeslicesTherefore, reseahers often
need to make &adeoff betweenthe quality ofvisualizationand the
selection ofappropriateforce-directed algorithmsin this paper, &
evaluatethe quality of snapshotgeneratedfrom 7 force-directed
algorithmsin terms of number of edgecrossingand the standard
deviatiors of edge lengthOur experimental results showed that KK,
FA2 and DH algorithms cannot produce satisfactasyalizatiors for
large graphswithin the time limit. KK-MS-DS algorithmcan process
large and planar graphatit does not perform well for graphs with
low average degreeKK-MS algorithm produces better visualizations
for sparse and nedustered graphthanKK-MS-DS algorithm.

Keywords: Snapshot visualization, Time-constrained execution,
Complexstructuredgraphs Forcedirected algorithms

1 INTRODUCTION

In recent yearsthere has been an intenseaarch activity in graph
visualization.A graph is worth a thousand wordSinceany relational
datacould be presented by a graph, it is a popular way for prieggent
harvested informationFForcedirected algorithms are widely uséalr
graph visualization. Thegan producerisualizatiors purely based on
the structure of a graph and do not require extra attribttesever,
there are many types afraphsfor differert application domainsand
each graph has i@wn uniquecharacteristis such asaverage degree,
density, the distribution of nodes, the distribution of edgtc. The
primary objective of the paper is to review and analyze the
performance of available rfoedirected algorithms for graph
visualization. The results obtained from this studhn beused for
further extending the foredirected algorithms for visualizing large
complexgraphs

In section 2, we review the related wolk.section 3we presenthe
experiment settings foanalying the performance offorce-directed
algorithmsbased on different benchmark dataséts section 4 we
comparethe algorithns based on a set of attributédnally, in section
5, we conclude the paper with future work.

2 RELATED WORK

Many forcedirected algorithms have been proposed in recent years3.2
and there are studies discussed about the performance of these

algorithms in graph visualizatiorForcedirected algorithms rely on
spring forces. Forces between the nodes @arcdmputed based on
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layouts for planar graph$l]. Classical forcalirected algorithms
include KamadaKawai (KK) algorithm [2], Davidson Harel (DH)
algorithm[3] andFruchterman Reingold (FR) algorithid]. B. Pajntar

[5] defined basic properties tfegraphs, the criterions afesthetically
pleasing presentation and the characteristics of classicaldosed
algorithms. B. Pajntar also summarized aestheticallypleasing
presentation of graph visuzdtions for human readabilitjdoreover,
Brandenburget al [6] defined severatriteria of aestheticallypleasing
visualizationsof graphswhich include: (a) uniformity of the edge
length, (b) uniformity of node distribution, (c) uniformity of edge
crossings and (d) display of symmetri€sirthermoreLipp et al.[7]
implemented an extensions of FR algorithm and compare with existing
algorithms with respect to the number of edge crossing, standard
deviation of edge length and the execution time.

3 FORCE-DIRECTED ALGORITHMS

In this section, we introduceseven force-directed algorithms
implementedor our experimentsKkamadaKawai (KK) algorithm[2],
KamadaKawai with multinode selection (KKMS) algorithm [8],
KamadaKawai with multiple node selection and decaying stiffness
(KK-MS-DS) algorithm [8], Davidson Harel (DH) algorithn{3],
Fruchterman Reingold (FR) algorithifd], Fruchterman Reingold
algorithm with range extension (FRRY] and ForceAtlas2 (FA2)
algorithm[10].

3.1 Kamada -Kawai (KK) algorithm

The KK algorithm [2] is basedo n E a d e srdbedsiqg madel g
[11]. The main objective of the KK algorithm is to distribute the nodes
and edges uniformly12]. To achievethis objective KK algorithm
uses a spring model that minimises the energy function of the graph.
The energy function of KK algorithm can be defined as follows:

% B Ij
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where Qy; is the stiffness of the spring between nod@and Q1
and ) are the positions of nodé®and "Qin the visualization and
4y is the ideal spring distance between nodeand Q The KK
algorithm calculateshe positiors for each pair of nodesQand 'QIn

the visualization the Euclidean distance of the pair is proportional to
0.

Kamada-Kawai with multi -node selection
algorithm

The KK algorithm selects and updates a no@éth maximum
changey ) per iteration. As updating is done one node at a time in the

(KK-MS)

their graph theoretic distances, determined by the lengths of shorteskk algorithm, more iterations are needed when the topology is large,

paths between thenRRepulsive forcesand attractive forcesare often
used to generataesthetically pleasing layout§&raphs drawn with
these algorithms tend to ekiiti symmetries, and produce crossinee

and thus it takes longer to execufEherefore, KK-MS algorithm
inserts the tofQ nodesinto an ordered queublext, KK -MS algorithm
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pops up the topQ nodes havindnighestmaximum changey  from value 'O can becalculated using the position of nod@and the other
the order queueand updates then o d evisual positions and nodes within the graph.

corresponding maximum change ¥ vaues. After that, the 0
algorithm insertshem back into the queue for the négtation After N . L ] T C
VE distinct nodes have been selected for updating their visual % @ o @ W
positions, KkMS algorithm clears the ordered queiMéhen a new vfcfiadih 0 “)
ordered queue is created, th&K-MS algorithm recalculates the . . NS ., S
maximum changeY  of the nodesfrom the graph. This process Q W o QW %
repeas until the termination conditions are met. The time complexity
of KK-MS algorithmis 6 ¢ ® © , where¢ is the number of where "QQand 0 are nodes andv and w are coordinates of
iteration, @ is the number of nodes in the givgraph, andv is the the node "QThe dtraction force™Q and the repulsion forcéQ can be
number ofnodes in the ordered queue calculated based oequations(6) and (7). If O O Tt then©O is

) ) ) ) used as th energy of the next iteration becauSe has lower energy
3.3 Kamada-Kawai with multi -node selection and value If O 'O m, the DH algorithm uses the Boltzmann

decaying stiffness (KK -MS-DS) algorithm distribution[13] to determine whether to use the new ene@yin the
The KK algorithm with multinode selection and decaying stiffness next iterationThe probability is defined as follows:
(KK-MS-DS) [8] includes heuristics toachieve faster energy level
reduction. The KKMS-DS algorithm selects nodes with the highest n Q ®)
average degrees to be the starting points. Next, theMBKDS
algorithm collects all twdop nodes and constructs an initial starting where 'Qis the Boltzmann constaand "Y is the temperature variable.
area. Moreover, KKMS-DS algorithm adoptshe heuristics from the |t § is less than thehresholde , then the new energ is accepted:;

KK-MS algorithm that update a group & nodes in every iteration,  otherwise, the old energ® will be used in the next iteration.
thereby speeding up the updating procedure for gheph The

KK-MS-DS algoritim also uses decaying stiffness témprove the 3.5 Fruchterman Reingold (FR) Algorithm

selection of nodesThat is, the higher the de_cay rate, the__more likely  The FR[4] algorithm distributes nodes evenly while maintains
the node is to be selected for the next iteration addition, the  yniform edge lengths. The FR algorithm uses two forces (attraction and
KK-MS-DS algorithm expands the starting area by checking the stablerepulsion) tocalculate the positions of the nodeather than using an

status i . A stable status implies that a coasssualizationof the energy function with a theetical graph distance. The attraction force
starting area has been constructed, but the final stage of the entireQ and repulsion force’Q are defined as follows:

graph has not been reached. The ratio of the stable siatusf the
starting area is given by:

QQ 2
o) (6)
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where Q is the distance between two nodes &ds the constant of
where & is the total number of edges in tiggaph 0 is the edge  ideal pairwise distance.
length of thecurrent iterationand 0 is the edge length of the input
graph If the stable status is lower than theeshold for a predefined
number of iterations, KKMS-DS algorithm add outside node$rom

3.6 Fruchterman Reingold algorithm with  range
extension (FRR)

the neighbouringreainto the starting area. FRR algorithm is based on the R algorithm, but uses a different
definition of the ideal pairwise distanc® FR algorithm uses an
3.4 Davidson Harel (DH) algorithm identical ideal pairwise distanc@for all edgesFRR algorithm uses

The DH algorithn{3] uses a simulated annealing process to produce the same definitions of the attractiof2 and repulsion "Q forces
avisualizationin which the nodes are distributed evenly. It is based on as the FR algotim. However, FRR algorith defines Qas the
the physical annealing process in which liquids are cooled into adistance between corresponding pairs of nodeigh can bederived
crystalline form. This algorithm also preventsdee from moving too ~ from the weight of link or from the time-of-arrival data[9]. FRR
close to noradjacent edgesAn energy valueO, attraction force'Q algorithm sometimes fails to generate an acceptablmlizationof the
and the repulsion forcé areusedin the simulated annealing process. diven topology as illustrated iRigure 1 (a). If the distribution of the
Theenergy value O is the sum of all attraction forces and repulsion €dges is not planar, then many nodesld be stacked together at the
forces which can beatculated as follows: centre of the canvas. These distortions are often caused by the
attraction force used in the FR algorithm. To alleviate this problem,
0 Efrat et al.[9] proposed a modified version of the attraction force.
£ p ¢ Using this modified attraction force, nodes can be pulled away from
% G (ch G- O ¢ the centre, as illustrated Figure 1 (b). The enhanced attraction force
ap 0P QTR @) "Q is defined as follows:

" . . C , , Q — L
Q  dn S @y Wy 0tk —ng‘ ®)
where "Qand "Qare nodes ando and & are coordinates ahe node . ) o ] o )
"QThe atraction force™Q and the repulsion forc& can becalculated ~ Where andQis the ideal pairwise distancend Q is the distance
based orequationg6) and(7). between node& and node¢
A node "Qis randomly selected from the graph on initializatibi
algorithm then creates a temporary no@end assigns a positido
the nodebased on the position of nod@ Therefore, a new energy



@

(b)

Figure 1 (a) Visualization generated by FRR algorithm, (b) Visualization
generated by FRR algorithm with modified attraction force.

3.7 ForceAtlas2 (FA2) algorithm
FA2 [10] algorithmwhich is based on FR algorithimtroduces new

implemented all the algorithms in Java and JUNG framedik We
implementedseven 6rcedirected algorithms for our experiment. They
are KamadaKawai (KK) algorithm [2], KamadaKawai with
multi-node selection (KKMS) algorithm [8], KamadaKawai with
multiple node selection and decaying stiffness {M&-DS) algorithm

[8], Davidson Harel (DH) algorithif3], Fruchterman Reingold (FR)
algorithm[4], Fruchterman Reingold algorithm with range extension
(FRR)[9] and ForceAtlas2 (FA2) algorithfi0].

Our implementations ofhe algorithns use the same termination
criterion. That is, each algorithrterminats when the maximum
execution timeexceeds30 minutes. We daot use the maximum
iterations fortermination criterion because the execution time of an
iteration is differenin eachalgorithm.We measured the quality of the
visualization (i.e. good visualizationy (a) the number of edge
crossings, (b) the standadeviation of the edge length$hese criteria
have been used by other studies to comphee visualizationof
force-directed algorithmg5-7, 16] We tested our algorithms on six
benchmarkdatasets which include planar, convex, roonvex, high

models of attraction, repulsion, and gravity forces. These models arél€nsity degree and namiform graphs. The topology information of

designedo produces a planeisualizationof the graph, yet minimises
edge crossing. Firstly, Jacomy et f10] used a modified LinLog
model as arextension of the attraction model in the FA2 algorithm.
The LinLog model was proposed by Andreas NodeK. The LinLog
model emphasises theésualizationof clusters in a graph and tightens
those clusters. The modified LinLog model used in the FA2 algorithm
is defined as follows:
0¢ kR GEM Q¢ )

where Q is the distance between nodés and ¢ .

Jacomy et al[10] proposed a degredependent repulsionmodel
for the FA2 algorithmthat balance the distance between nodes with

the data sets is shown Trable 1 These data setan be downloaded
from [17] and they are frequentlyjused in the studies of graph
visualizationby forcedirected algorithm§7, 18-22].

Table 1. Dataset of experiments

Dataset Nodes  Edges Avg. degree
crack 10240 30380 5.93
flower_005 930 13521 29.08
grid_rnd_100 9497 17849 3.76
sierpinski_06 1095 2187 3.99
snowflake_B 971 970 2
tree_06_03 259 258 1.99

higher average degrees and nodes with lower average degrees. This ResuiTs

repulsion model increases the chancesades with lower average
degrees connecting tonodes with higher average degreebhe
degreedependent repultsn model "O used in the FA2 algorithm is
defined as follows:

o AAE p AAg

Q¢ R

0¢ ke P

(10)

where 'Q is the distance between nodés and & , Q'QE is the
number of edges associated with the nddeincluding in and
outdegree edges an@is a constant of ideal pairwise distance, as
used in the FR algorithmBesides, FA2 algorithm adds theéwo
gravitational force: gravity and strong gravity. The purpose of the
gravity model is to compensate foethepulsion of nodes, and prevents
disconnected nodes from drifting away from the centre of the canvas.
Jacomy et al[10] statedcthat gravty can sometimes be stronger than

the attraction and repulsion forces. When the strong gravity model is

used in uniform graphs, the nodes can be stacked together. Jacomy et
[10] also concluded that strong gravity may be useful only for specific

types of graphs. The gravity and strong gravity models used in the FA2

algorithm are defined as follows:

0E 0 QQom p (11)

ot Q QQ® p Q¢ (12)
where 'Qis a constant of ideal pairwise distand®,Q®) is the
number of edges associated with the nédéencluding indegree and
out-degree edges, an@ ¢ is the distance from nodé to the central

point of the canvas.

4 EXPERIMENT SETTING

The experiments were performed on an Intel Core i5 CPU with 4
cores, 1.8 GHz and 16 GB RAM running Windows We and

We first compared the number eflgecrossings produced by the
algorithms The experimental resslareshown inFigure2. According
to results the data setdi ¢ Ge€the largest number of edge crossings
and the data seb i @@t chas the lowest number of edge crossings
amag different algorithms. Specifically, the average number of edge
crossings in FA2, FRR, DH, FR, KK, KRS, KK-MS-DS algorithms
are 10803.83, 9694.66, 10754.5, 9603.16, 10227.5, 8378.66, 6337.33
with respect to each data set. From these results, we carvelibat
KK-MS-DS algorithm achieves the lowest number of edge crossings
and FA2 algorithm obtains the highest number of edge crossings.
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Figure 2 Number of edge crossing for each algorithm

In addition, we compared the standard deviation of edge leng
eachforcedi rect ed algorithmés visu
are illustrated inFigure 3. The standard deviation of edge length
FA2, FRR, DH, FR, KK, KKDS, KK-MS-DS algorithms are 7.53



66.69, 104.68, 78.22, 144.56, 12.53, 225.75 with respect to eac
data set. We can notice that standard deviation of sormregbgthms
are quite smallA low standard deviation indicates that thedes are
stackedif the large number of nodes in the snapshde.g. FA2
algorithm) while a high standard deviation indicates thatlémgth of
edgeare spread oye.g. KK-MS-DS algorithm)
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Figure 3 Standard deviation of the edge for each force-directed algorithm

5.1 visualization of force -directed algorithms

In our experiments, thdorce-directed algorithmsare designed tc
terminate when the execution timexceeds30 minutes.To better
understand the performance of each algorijtivan capture thenapsot
of eachforcedirected algorithm at 10 minutes, 20 minutes and
minutesintervals

From the snapshots, we can observe thttoagh the standart
deviation of FA2algorithm is smaller than other algorithntise actual
visualization does not producepleasinggraphlayout as expected an
nodes are stacked each otherthe final results. This situation i
illustrated inTable 2

Table 2. The snapshots of visualization byFA2 algorithm.

Dataset Snapshot
10 20 30
minutes ~ minutes  minutes
flower_005 R

sierpinski_06

grid_rnd_100 . == “

snowflake B

tree_06_03

FRR algorithm cannot produeepleasing visualizations for large
graphs associated with thedata sets®i G @fd Qi W@ Q1
because FRR algorithms need more iterations for large graphs
thus 30 minutesexecution time isstill not sufficient under such
settings. Besides,the output visualizations forhé data sets
01 @@ oandi QQi n, iRedo WNexpand uniformlyand some

areas othegrapts are twisted andome of thenodes are stackedhis
situation isillustrated inTable 3

Table 3. The snapshots of visualization by FRR algorithm.

Dataset Snapshot

20 minutes

10 minutes 30 minutes

crack

flower_00 i
5 4

grid_rnd_
100

sierpinski
_06

snowflake
B

tree_06_0 W . z
3 i. # a. # % 4

e

DH algorithm is similar to the FRR algorithnfsee Table 4. As
expected the algorithm cannoproduce pleasing visualizatiors for
large graphs. Besides, DH algorithm does not producepléeesing
visualizatiors for the datasetsxcept for the'Qa ¢ YriCri wata setin
addition the visualizations are neither uniform nor symmetric.

Table 4. The snapshots of visualization by DH algorithm.

Dataset Snapshot

20 minutes

10 minutes 30 minutes

crack

flower_00
5

grid_rnd_1
00

sierpinski_
06




snowflake
B

tree_06_0
3

FR algorithm produces better visualizatidor data setsbi ¢ ene

Qi W@ pmnmFrom the snapshots, we can also observe that

althoughsome nodes have been expantgdhe algorithmthe entire

graph is not completely unfolded. However, the visualization of

datasets"Qa ¢ OriCni,Li 'QQI N MQPandA'E ¢ 0 Qb ¢ar@'Quite
poor andFR algorithm could not recover the layout athe FRR
algorithm did.This situation $illustrated inTable 5

Table 5. The snapshots of visualization by FR algorithm.

Snapshot
20 minutes

Dataset

10 minutes 30 minutes

crack

flower_00
5

grid_rnd_1
00

sierpinski_
06

snowflake
B

tree_06_0
3

KK algorithm cannot producpleasingvisualizations for large graphs

such as data set®i ¢ en@Qi "©'@ @ n as illustrated inTable 6

Moreover, KK algorithm cannatffectively generatéhe visualization

for dataset 0 1 @@ o Although the output visualization is
symmetric and unifion, the visualization does not look like a tree

Table 6. The snapshot of visualizations by KK algorithm.

Dataset Snapshot

10 minutes 20 minutes 30 minutes

crack

flower_0
05

grid_rnd_
100

sierpinski
_06

snowflak
e B

tree_06_
03

unfolded in datsets @1 ¢ en@QI V@ ® m.7Similar to the KK
algorithm, KK-MS algorithm cannot effectively generate the
visualizations forthe datased i ‘@'@rt o This situation isllustrated
in Table 7

Table 7. The snapshots of visualization by KK-MS algorithm.

Dataset Snapshot

20 minutes

10 minutes 30 minutes

crack

grid_rnd_
100

sierpinski
06




