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Force-directed algorithms for schematic drawings and placement: a 

Survey 

Force-directed algorithms have been developed over the last 50 years and used in many application fields, 

including information visualisation, biological network visualisation, sensor networks, routing algorithms, 

scheduling, graph drawing, etc. Our survey provides a comprehensive summary of developments and a full 

roadmap for state-of-the-art force-directed algorithms in schematic drawings and placement. We classified the 

model of force-directed algorithms into classical and hybrid. The classical force-directed algorithms are further 

classified as follows: (a) accumulated force models, (b) energy function minimisation models, and (c) 

combinatorial optimisation models. The hybrid force-directed algorithms are classified as follows: (a) parallel 

and hardware accelerated models, (b) multilevel force-directed models, and (c) multidimensional scaling force-

directed algorithms. Five categories of application domains in which force-directed algorithms have been 

adopted for schematic drawings and placement are also summarised: (a) aesthetic drawings for general networks, 

(b) component placement and scheduling in high-level synthesis of very-large scale integration (VLSI) circuits 

design, (c) information visualisation, (d) biological network visualisation, and (e) node placement and 

localisation for sensor networks. 

Keywords: Force-directed algorithms; schematic drawing; force-directed placement; information visualisation. 

1 INTRODUCTION 

Force-directed algorithms have been developed over the last 50 years and adopted in numerous 

application fields. For example, these include: visualising genetic structures automatically in biology, optimising 

networks for parallel computer architectures, detecting clusters and hidden patterns in the social sciences, 

placing and scheduling components for very-large-scale integration circuits (VLSI), and computing 

undirected/directed networks (graphs) for information visualisation, etc. A schematic drawing is a representation 

of the elements of a network using simple graphic symbols. Such drawing shows crucial components of the 

network and the details that are not relevant to the information are omitted [1]. For example, a dot may be used 

to represent a station in a subway map. In this case, the dot is used to provide key location information to the 

users without causing any unnecessary visual cluttering. In some application domains, the size of the canvas and 

the detailed arrangement of the elements in the drawing are constrained by certain technical limits. Force-

directed placement [2] is one of the approaches for the node placement in the schematic drawing. The placement 

of nodes along the edges or in a specific region of the canvas are useful in VLSI applications. According to 

statistics on annual paper submissions related to force-directed algorithms depicted in Figure 1 (a), force-directed 

algorithms are very popular and have often been preferred over other algorithms since the 1980s. Figure 1 (a) and 

Figure 1 (b) show a classification of force-directed algorithms by trends in paper submission and application 

fields. According to our review, 38% of force-directed algorithm studies relate to schematics and the aesthetics 

of network visualisation; 30% relate to VLSI applications, with 21% accounted for by placement and 9% by 

scheduling; in approximately 20% of force-directed algorithm studies, they are applied for social information 

visualisation; and biological network visualisation and sensor placement and localisation account for 10% and 

3%, respectively. These statistics suggest that most applications of force-directed algorithms can be formulated 

as a problem of network visualisation, which, in turn, can be understood as problem of combinatorial 

optimisation — to find a visual drawing of an input network topology in a way that optimises functions of 

interest.  

We have adopted a simple approach to classify the papers which are related to force-directed 

algorithms. The data sources of the papers reviewed in this survey are from ACM Digital Library [3] and Scopus 
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[4]. The paper submission count of force-directed algorithms classified by application fields is illustrated in 

Figure 8. First, the papers reviewed in this survey were sorted by publication year. Next, they were categorised 

into corresponding application domains. The results of the classification are illustrated in Figure 1(c). According 

to our classification results, studies of force-directed algorithm applications in VLSI have the longest history. 

The first VLSI study of force-directed algorithms was published in 1965 and this research domain remains 

popular in 2017. Aesthetics drawing became popular around 1995 and its popularity is ongoing. By contrast, 

force-directed algorithms for sensor placement and localisation are relatively new research domains. The first 

publication in this area dates to 2004 and the publication count has increased since 2008. We also found 

evidence of force-directed algorithmic applications for biological network visualisation dating back to 1995, 

with publication counts increasing dramatically from 2003 (8 papers per year on average). Finally, studies of 

force-directed algorithms for social information visualisation have been popular since 2005 and, to date, offer 

the highest publication counts among all of the research fields.  

Each of these applications relates to information visualisation broadly. Information visualisation allows 

users to make better sense of network relationships than by simply looking at data in tabular form. However, 

unsupervised visualisation cannot meet these objectives. How network topologies are drawn can significantly 

affect how viewers understand the network. The layout and position-assignment of visualised network nodes 

influence how a user perceives network relationships. Identifying visualisations that convey the appropriate 

information to the user is thus crucial. Filtering and pattern analysis have also been applied for force-directed 

algorithms to discover insightful relationships and reduce clutter. These methods are especially useful in the 

visualisation of social data, in which metrics associated with each node are used to understand and identify 

unexpected network patterns more effectively.  

Force-directed algorithms face a number of challenges. Most visualisation problems are NP-hard; as 

such, approximation methods and heuristics are often proposed, because an almost-global optimum is sufficient 

for most applications. In addition, force-directed algorithms currently suffer from a number of technical 

drawbacks. First, they are easy to converge to a localised optima. Second, even the hardware performance has 

been improved; the running time of force-directed algorithms is still high when producing visualisations for 

large networks. Third, it is time-consuming to fine-tune the parameters of a large class of networks because the 

suitable parameters for a particular network class are often disadvantageous for other classes. 

 Several literature reviews on force-directed algorithms have been published in recent years [5-10]. In 

[10], Battista et al. presented an annotated bibliography of algorithms for visualisation of graphs. The algorithms 

reported in their review can be used to visualise various types of graphs such as trees, general graphs, planar 

graphs, directed graphs, etc. Force-directed algorithms for visualisation of straight-line drawings were also 

reported in the bibliography. In [5], Gibson et al. reviewed algorithms for force-directed layouts, dimension 

reduction in graph layout, and multilevel techniques for computational improvements. Gibson et al. also 

evaluated force-directed algorithms based on aesthetic properties of the drawings such as minimising edge 

crossings, achieving symmetry, and uniformity on edge nodes, etc. In [7], Tamassia et al. reviewed the 

algorithms for symmetric graph drawing, tree drawing, spine and radial drawings, circular drawing, rectangular 

drawing and force-directed drawing, etc. Tamassia et al. also summarised the algorithms and tools used in 

different application areas such as computer security, education, computer networks, data analytics, graph 

drawing and cartography, social networks and biological networks. In [11], Battista et al. reviewed the 

algorithms for force-directed drawing, planer orthogonal –or- straight-line drawings, non-planar drawings, etc. 

In their review, force-directed algorithms were categorised based on spring and electrical forces, barycenter 

method, forces simulating graphs theoretic distance, energy functions and magnetic fields. In addition, aesthetic 

properties such as edge crossings, minimisation of the area of the drawing, minimisation of the length of edges, 

uniform edge length, uniform bends, symmetric property were also summarised.  



In [6], Kobourov summarised spring systems and electrical forces in graph drawings such as graph 

theoretic distances approach, stress majorisation, non-Euclidean approaches, and Lombardi spring embedders. 

They also considered several classical algorithms in spring embedders layouts such as force-directed algorithms, 

barycentric method, and multiscale methods for dynamic graphs. In [9], Brandenburg et al. compared five force-

directed algorithms for drawing graphs in which the positions of the nodes are randomised. Their experiments 

aimed to evaluate the performance of force-directed algorithms in terms of uniformity in edge length and node 

distribution. In contrast to previous surveys, in this paper, we provide a comprehensive summary and full 

roadmap for the state of the art in force-directed algorithms in terms of latest research domains and models 

including social information visualisation, biological network visualisation, sensor networks, routing algorithms, 

scheduling, and graph drawing. An overview of the classification of existing force-directed algorithms is also 

provided in this survey. 

 In our survey, 230 papers related to force-directed algorithms have been reviewed. To find these papers, 

we implemented a web mining tool using Java programming language to parse search results from the ACM 

Digital Library [3] and Scopus [4]. We used four keywords (―force directed algorithms‖, ―force-directed 

algorithms‖, ―force-directed‖ and ―force directed‖) to filter relevant papers. The search results from the ACM 

Digital Library [3] contain the attributes such as authors, title, keywords, abstract and result highlight of papers. 

The search results from Scopus [4] contain similar attributes except the highlights. Moreover, we applied 

following filters to remove irrelevant and redundant results in order to improve the accuracy: 

1. The abstract, highlights, the keywords, or the title of the paper must contain at least one of the four 

keywords used in the searching. 

2. Papers returned from partial match were omitted. For example, ―They force are applied … directed … 

algorithm‖, ―… directed …‖, ―force …‖, ―…algorithm‖. 

We also checked the first author and the title of the paper to remove duplicate publications. Figure 2 illustrates 

state-of-the-art studies and milestones in various force-directed models, including the accumulated force model, 

the energy function minimisation model, the combinatorial optimisation model, the multilevel model, the 

multidimensional scaling model and the clustered model. Our findings suggest that many papers are application 

studies, in which force-directed algorithms are used but without detailed formulation. Application studies 

usually adopt and/or revise existing force-directed algorithms to achieve the objectives of specified tasks. 

Because of this, our survey is divided into two parts. For those studies adopting force-directed algorithms to 

resolve schematic drawings and placement tasks, we first summarise them in our survey in terms of application 

domains and methods. We then conclude the formulation (model) of notable force-directed algorithms which 

have been used in application discussed in the first part. 

The structure of the survey is as follows: Section 2 presents an overview about the notable force-

directed algorithms that have been used most often across the different application domains. Section 3 

introduces force-directed algorithms for applications in schematic drawings and placement. Section 4 concludes 

the survey by summarising patterns across the literature. 
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Figure 1 (a) Annual paper submission count related to force-directed algorithms; (b) Catalogues of the papers 

reviewed in this survey; (c)  Paper submission trend on force-directed algorithms. 

 



 
Figure 2 Studies of force-directed models. 

1.1 NOTATIONS AND CONVENTIONS 

For the purpose of the survey, the notation 𝐺 = (𝑉, 𝐸) represents a network 𝐺, including a set of nodes 

𝑉 and edges 𝐸 between these nodes. The visual drawing of a network is a picture of a network that assigns a 

position to each node and a curve to each edge. A connected network is a network in which for each pair 𝑢, 𝑣 of 

nodes, there is always a path between 𝑢 and 𝑣. 
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2 FORCE-DIRECTED ALGORITHMS 

Force-directed algorithms can be divided into classical and hybrid algorithms according to their 

characteristics and computational modelling. The overview of force-directed algorithms is illustrated in Figure 3. 

Classical force-directed algorithms are usually based on physical laws, specifically in ways that simulate a 

spring system. Full descriptions of classical force-directed algorithms are described in section 2.1. Hybrid force-

directed algorithms are designed for large and complex networks. These algorithms use heuristics to improve the 

performance of classical force-directed algorithms. Hardware acceleration and multilevel methods are also 

popular in improving the performance. Full descriptions of notable hybrid force-directed algorithms are 

described in section 2.2. 

   
Figure 3 Overview of force-directed algorithms. 

 

The pioneer of force-directed algorithms, the Tutte algorithm, was first proposed in 1963 [197]. The 

Tutte algorithm is based on the barycentric method [7, 198] and is applicable for tri-connected and planar graphs. 

A tri-connected graph is a connected graph such that deleting any two nodes results in a graph that is still 

connected. The force function of a node 𝑣 of the Tutte algorithm is defined as follows: 

 𝐹(𝑣) = ∑ (𝑝𝑢 − 𝑝𝑣)

𝑢,𝑣∈𝐸

 (

1) 

where 𝑝𝑢  and 𝑝𝑣  are the positions of node 𝑢  and 𝑣 . Solving the linear equations from the result of partial 

derivatives of the force function of Tutte algorithm 𝐹 can obtain the updated 𝑥-coordinate and 𝑦-coordinate of 

nodes. These linear equations are defined as follows: 

  𝑥𝑣 =
1

𝑑𝑒𝑔(𝑣)
∑ 𝑥𝑢
𝑢,𝑣∈𝐸

 (

2) 

 𝑦𝑣 =
1

𝑑𝑒𝑔(𝑣)
∑ 𝑦𝑢
𝑢,v∈𝐸

 (

3) 



where deg(v) is the number of edges attached to node v. xv, yv are the x-coordinate and y-coordinate of node v. 

An example of the Tutte algorithm is illustrated in Figure 4. Nodes 1, 2, 3, 4 and 5 in Figure 4 form a strictly 

convex polygon. The Tutte algorithm first selects a strictly convex polygon from the graph, in which all nodes 

on the convex polygon should have a fixed initial position. Therefore, nodes 1, 2, 3, 4 and 5 are assigned a fixed 

initial position. The position of remaining nodes (i.e. 6, 7, 8) then can be computed by the Tutte algorithm. 

 
Figure 4 An example of Tutte algorithm. 

2.1 CLASSICAL FORCE-DIRECTED ALGORITHMS 

2.1.1 Accumulated force models 

Accumulated force models follow the simulation of a spring system, in which the length of the spring is 

proportional to the force exerted by an extended spring. Repulsive and attractive forces are basic forces defined 

in the accumulated force models. Repulsive force is computed for every node pair and attractive force is 

computed for every adjacent node [199]. The sum of the values of repulsive and attractive forces for each node 

are stored in the tempoarry variables, which can be used for updating the nodes‘positions. Most accumulated 

force models follow Hooke‘s law [200] and the footsteps of Eades‘ algorithm [26]. Because of this, we first 

introduce the principle of Eades algorithm in the section 2.1.1.1. We then introduce the successors of Eades 

algorithm, Fruchterman-Reingold algorithm and ForceAtlas2 algorithm, in sections 2.1.1.2 and 2.1.1.3, 

respectively. 

2.1.1.1 Eades algorithm 
The idea of Eades‘ spring-embedded algorithm is to model a network as a magnetised system with rings 

representing nodes and the length of edges represented by the spring. Eades [26] was the first algorithm to 

consider attractive and repulsive forces. The attractive force 𝑓𝑎 is applied to nodes that have a direct connection 

by an edge (i.e. 𝑑(𝑖, 𝑗) = 1), and the repulsive force 𝑓𝑟 is applied to nodes that have an indirect connection (i.e. 

𝑑(𝑖, 𝑗) > 1). The attractive and repulsive forces of Eades algorithm are defined as follows: 

 𝑓𝑎(𝑖, 𝑗) = 𝐶𝑎 log
𝑑(𝑖, 𝑗)

𝑑0
 

(

4) 

 𝑓𝑟(𝑖, 𝑗) = 𝐶𝑟
1

𝑑(𝑖, 𝑗)2
 

(

5) 

where 𝑑(𝑖, 𝑗) is the distance between node 𝑖 and 𝑗, 𝑑0 is the ideal edge length, and 𝐶𝑎 and 𝐶𝑟 are the constants. 

The aim of the algorithm is to find zero-force locations for all nodes to reach a state of equilibrium for the spring 

system. 

2.1.1.2 Fruchterman-Reingold algorithm 

 The Fruchterman-Reingold (FR) algorithm [2] is based on Eades algorithm [26]. Like the Eades 

algorithm, the FR algorithm uses two forces, with the attractive force (𝑓𝑎) and repulsive force (𝑓𝑟) defined as 

follows: 

 𝑓𝑎(𝑑) =
𝑑2

𝑘
   (6) 
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 𝑓𝑟(𝑑) = −
𝑘2

𝑑
   (7) 

where 𝑑 is the distance between two nodes and 𝑘 is the constant of ideal pairwise distance. For the attraction 

force, 𝑓𝑎 , 𝑘 can be written as 𝑎 × √
𝑊×𝐻

𝑛
, and can be written as 𝑟 × √

𝑊×𝐻

𝑛
 for the repulsion force, 𝑓𝑟; where 𝑊 is 

the width of the canvas, 𝐻 is the height of the canvas, 𝑛 is the total number of nodes in the network topology, 𝑎 

is a constant for the attraction multiplier, and 𝑟 is a constant for the repulsion multiplier. 

 The FR algorithm is executed iteratively. In each iteration, all of the nodes are moved simultaneously 

after the forces have been calculated. When updating the position of the nodes, the algorithm adds a 

‗displacement‘ attribute to store the position offset of the nodes. At the start of each iteration, the initial values 

of the displacement for all of the nodes are calculated using the repulsion force (𝑓𝑟). The algorithm uses the 

attraction force (𝑓𝑎) to iteratively update the position of the nodes on every edge. Finally, it updates the position 

offset of the nodes using the displacement value.  

 The displacement scale, 𝑠 , is used as the termination condition of the FR algorithm. When the 

displacement scale, 𝑠, is lower than the threshold value, 𝜀, the algorithm is terminated. When the algorithm is 

initialised, the value of the displacement scale, 𝑠, is set to 
𝑊

10
. This value is updated in each iteration according to 

the iteration count and the maximum number of iterations set by the user. 

2.1.1.3 ForceAtlas2 algorithm 

 ForceAtlas2 (FA2) was proposed by Jacomy et al. [22] to satisfy speed and precision for network 

visualisation. The algorithm extends the LinLog [32] and FR algorithm [2]. Its authors proposed a revised 

attractive force based on the LinLog model [32] and defined as follows: 

 𝐹𝑎(𝑛1, 𝑛2) = 𝑙𝑜𝑔(1 + 𝑑(𝑛1, 𝑛2)) (8) 

where 𝑑 is the distance between nodes 𝑛1 and 𝑛2. Moreover, a degree-dependent repulsion model was proposed 

in the FA2 algorithm to reduce the repulsive forces. This repulsion model increases the chances of lower-than-

average-degree nodes connecting to higher-than-average-degree nodes. 

 𝐹𝑟(𝑛1, 𝑛2) = 𝑘 ×
(𝑑𝑒𝑔(𝑛1) + 1) × (𝑑𝑒𝑔(𝑛2) + 1)

𝑑(𝑛1, 𝑛2)
 (9) 

where 𝑘 is a constant of ideal pairwise distance, as used in the FR algorithm [2], 𝑑 is the distance between nodes 

𝑛1 and 𝑛2 and 𝑑𝑒𝑔(𝑛) is the number of edges associated with the node 𝑛, including in- and out-degree edges. In 

addition, the FA2 algorithm also uses gravitational force and strong gravitational force. Jacomy et al. [22] 

concluded that strong gravitational force may be useful only for specific types of networks. The definition of 

these gravitational and strong gravitational forces are defined as follows, respectively: 

 𝐹𝑔(𝑛) = 𝑘 × (𝑑𝑒𝑔(𝑛) + 1) (10) 

 𝐹𝑠𝑔(𝑛) = 𝑘 × (𝑑𝑒𝑔(𝑛) + 1) × 𝑑(𝑛) (11) 

2.1.2 Energy function minimisation model 

In contrast to the accumulated force model, the energy function minimisation model uses the spring 

system to minimise the difference between the visual distance and theoretical graphed distance, and this is 

accomplished by solving (minimising) an energy function. They do not consider attractive and repulsive forces 

separately, but rather in conjunction to minimise an energy function. That is, if the visual distance of a pair of 

nodes is closer than their corresponding theoretical graphed distance, they repel each other; otherwise, they 

attract each other. The Kamada-Kawai algorithm is the pioneering algorithm for energy function minimisation 

models. The description of the Kamada-Kawai algorithm is given in section 2.1.2.1 and a technique to improve 

the energy function minimisation model is summarised in section 2.1.2.2. 



2.1.2.1 Kamada-Kawai algorithm 

In the Kamada-Kawai (KK) algorithm [31], nodes are placed so that their visual distance within the 

drawing is proportional to their theoretical graphed distance. As this goal cannot always be achieved for 

arbitrary network topologies, the key idea behind the algorithm is to use a spring model in such a way that the 

energy function of the network topology is minimised. The energy function E is: 

 𝐸 = ∑ ∑
1

2
𝑘 , (|𝑝 − 𝑝 | − 𝑙 , )

2
𝑛

    1

𝑛 1

  1

 (12) 

where 𝑘 ,  is the stiffness of a spring between nodes 𝑖 and 𝑗, 𝑙 ,  is the ideal distance of a spring between nodes 𝑖 

and 𝑗, and 𝑝  and 𝑝  are the visual positions of nodes 𝑖 and 𝑗, respectively. That is, the KK algorithm finds a 

visual position for each pair of nodes 𝑖 and 𝑗, and their Euclidean distance is proportional to 𝑙 , . Here, the KK 

algorithm defines a diameter matrix that stores theoretical graphed distances (𝑑 , ) of the nodes. 𝑑 , , which 

represents the hop count between nodes 𝑖 and 𝑗. 𝑑 ,  is the shortest hop count between nodes 𝑖 and 𝑗. The ideal 

distance of a spring (𝑙 , ) between nodes 𝑖 and 𝑗 is defined as follows: 

 𝑙 , =
 0
𝑑 ,    

𝑚𝑎 × 𝑑 ,  (13) 

where  0 is the side length of the drawing frame and 𝑑 ,    
𝑚𝑎  is the diameter of the network topology. Moreover, 

the stiffness of a spring between nodes 𝑖 and 𝑗 is calculated as follows: 

 𝑘 , =
 

𝑑 , 
2  (14) 

where   is a scaling and 𝑑 ,  represents the theoretical graphed distances of nodes 𝑖 and 𝑗. The KK algorithm 

then seeks a visual position for every node 𝑣 in the network topology and tries to decrease the energy function in 

the whole network. That is, the KK algorithm calculates the partial derivatives for all of the nodes in the network 

topology in terms of every 𝑥𝑣 and 𝑦𝑣 that are zero (i.e., 
𝜕𝐸

𝜕 𝑣
= 0 𝑎𝑛𝑑 

𝜕𝐸

𝜕𝑦𝑣
= 0, 𝑓𝑜𝑟 1 ≤ 𝑣 < 𝑛). However, solving 

all of these non-linear equations simultaneously is unfeasible because they are dependent on one another. 

Therefore, an iterative approach can be used to solve the equation based on the Newton-Raphson method. At 

each iteration, the algorithm chooses a node 𝑚 that has the largest maximum change (∆𝑚). In other words, the 

node 𝑚 is moved to the new position, where it can reach a lower level of ∆𝑚 than prior. Meanwhile, the other 

nodes remain fixed. The maximum change (∆𝑚) is calculated as follows: 

 ∆𝑚= √(
 𝐸

 𝑥𝑚
)
2

+ (
 𝐸

 𝑦𝑚
)
2

 (15) 

2.1.2.2 Stress majorisation optimisation 

In force-directed algorithms such as the KK algorithm [31], visual distance is proportional to the 

theoretical graphed distance. Stress majorisation optimisation [201-203] is a technique to minimise energy 

function via majorisation. This technique improves the visual drawing of network topologies iteratively. The 

principle of majorisation optimisation is to construct a sequence of quadratic forms in which each iteration binds 

the stress function. The stress function then monotonically decreases (never increases) with every iteration. Thus, 

a lower value for the energy function is achieved in the same running time [203]. Unlike the KK algorithm, then, 

the stress function optimised via majorisation is guaranteed to converge [7]. Stress majorisation optimisation is 

useful for large and clustered networks, especially for applications to social information visualisation [204, 205]. 
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2.1.3 Combinatorial optimisation model 

Combinatorial optimisation models are probabilistic algorithms, often inspired by evolutionary 

mechanisms. Simulated annealing, differential evolution and genetic algorithms use a number of measures to 

improve a candidate solution and to optimise a problem iteratively. Although these algorithms share many 

similar properties, they still have distinctive features, including population determination, strategies to search the 

solution state space, etc. [206]. 

2.1.3.1 Davidson-Harel algorithm 

The process of simulated annealing is inspired by the physical cooling process of molten materials. 

Molten steel will crack and form bubbles that make it brittle if cooled too quickly. The steel must therefore be 

cooled evenly for a better result — a process known as annealing in metallurgy [7, 207, 208]. The Davidson-

Harel (DH) algorithm [29] uses a simulation of the annealing process to prevent nodes from moving too close to 

non-adjacent edges and to minimise edge crossings. An energy value 𝐸, attraction force 𝑓𝑎 and repulsion force 

𝑓𝑟 are used in the simulation. The energy value (𝐸) is the sum of all attraction forces (𝑓𝑎) and repulsion forces 

(𝑓𝑟) which can be calculated as follows: 

 𝐸 = ∑ ∑ 𝑓𝑎 (√(𝑥 − 𝑥 )
2
+ (𝑦 − 𝑦 )

2
) + 𝑓𝑟 (√(𝑥 − 𝑥 )

2
+ (𝑦 − 𝑦 )

2
)

𝑛

    1

𝑛 1

  1

 (16) 

 A node 𝑖 is randomly selected from the network on initialisation. The DH algorithm then creates a 

temporary node 𝑗, and assigns a position to the node based on the position of node 𝑖. Therefore, a new energy 

value 𝐸′ can be calculated using the position of node 𝑗 and other nodes within the network. 

 𝐸′ = ∑ 𝑓𝑎 (√(𝑥𝑣 − 𝑥 )
2
+ (𝑦𝑣 − 𝑦 )

2
) + 𝑓𝑟 (√(𝑥𝑣 − 𝑥 )

2
+ (𝑦𝑣 − 𝑦 )

2
)

𝑣, ∈𝑉, ∉𝑉,𝑣≠ 

 (17) 

 Moreover, the DH algorithm obeys the rules of the Boltzmann distribution when the liquid is cooled 

slowly [209]. If 𝐸′ − 𝐸 ≤ 0, then  𝐸′ is used as the energy of the next iteration, as 𝐸′ has lower energy value. If 

𝐸′ − 𝐸 > 0, a probability equation is used to determine whether to use the new energy 𝐸′ in the next iteration. 

The probability equation is defined as follows:  

 
𝑝 = 𝑒 

(𝐸′ 𝐸)
𝑘×𝑇  (18) 

where 𝑇  is the temperature variable and 𝑘  is the Boltzmann constant. If the probability 𝑝  is less than the 

threshold 𝜑, then the new energy 𝐸′ is accepted; otherwise, the old energy 𝐸 will be used in the next iteration.  

2.1.3.2 Kudelka algorithm 

The Kudelka algorithm [210] is a force-directed algorithm that aims to find a low-dimensional 

representation of the high-dimensional network. This allows the high-dimensional network to be visualised in 

low-dimensional (e.g. two- or three-) space. Sammon‘s mapping [211] and the differential evolution method are 

used in the Kudelka algorithm. Differential evolution is a population-based optimiser. It evolves a population of 

real encoded vectors in which the initial values of vectors are randomly chosen from within a predefined range. 

Differential evolution generates new vectors and operations using the real encoding of candidates. As a result, 

new vectors are perturbed and scaled from the existing vectors of the population. The objective of the Kudelka 

algorithm is to minimise the projection error function 𝐸, which is defined as follows: 

 𝐸 =
1

∑ 𝑑  
∗𝑚

   

∑
(𝑑  

∗ − 𝑑  )
2

𝑑  
∗

𝑚

   

 
(
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where 𝑑  
∗  is the distance between 𝑋  and 𝑌 . The distance between corresponding vector 𝑌  and 𝑌  in lower 

dimensional space is denoted as 𝑑  . 

2.2 HYBRID FORCE-DIRECTED ALGORITHMS 

Several studies have used heuristic techniques to improve the performance of force-directed algorithms 

and reduce execution time, enabling the algorithms to visualise large and complex networks in an efficient 

manner. For example, the multilevel technique simplifies networks through network abstraction processes. 

Distributed force-directed algorithms use parallel computing and hardware acceleration to reduce execution time 

for parsing large networks. The multidimensional scaling technique is useful for visualising networks‘ 

meaningful underlying dimensions. State-of-the-art studies of these heuristics are discussed and summarised in 

the following sections. 

2.2.1 Parallel and hardware accelerated force-directed algorithms 

The major principle of parallel computing is to solve a computational problem using multiple resources 

simultaneously [212, 213]. Generally, parallel computing involves the following steps: 

1. A computational problem is first broken into smaller pieces of executable content that can be solved 

concurrently. 

2. Each piece of executable content will be further broken down into a series of instructions for the 

Central Processing Unit (CPU) or Graphics Processing Unit (GPU). 

3. Instructions from every piece of executable content are executed simultaneously on different CPU or 

GPU. 

4. An overall coordination mechanism is used. When a task has completed the execution of instructions, it 

sends an acknowledgment to the coordinator before sending the result to the receiving task. 

Most parallel computing frameworks [214-216] for force-directed algorithms are based on the 

accumulated force model. For example, the GPU parallel computing framework [217] was proposed for 

identifying the k-nearest neighbours, the results of which were then utilised to speed up the FR algorithm [2]. A 

distributed force-directed algorithm in an open source distributed computing framework called Giraph1 [218] 

was implemented in Amazon‘s cloud computing infrastructure PaaS (Platform as a Service) [219]. Arleo et al. 

[218] claimed that the algorithm can process networks with up to million edges. A parallel FR algorithm [2] 

based on Open Computing Language (OpenCL) was proposed by Krijnen [220] and Wang et al. [221]. OpenCL 

programs can be executed across heterogeneous platforms with modern CPUs, GPUs, and microprocessor 

designs [222]. There are also parallel force-directed algorithms [223-225] based on the Message Passing 

Interface (MPI). MPI is defined by a group of parallel computing vendors and applications specialists
2
 as a 

specification for a standard library for message passing in distributed computing.  

2.2.2 Multilevel force-directed algorithms 

The multilevel technique for force-directed algorithms involves concepts from network abstraction and 

can be divided into two main phases. In the first phase, called ‗coarsening‘, the original network is split into a 

sequence of coarse networks with decreasing sizes. This simplifies the combinatorial structure of the network by 

selecting the coalescent pairs of adjacent nodes to construct a new network. The selection process is repeated 

recursively to abstract a sequence of such coarse networks. The process of energy optimisation (minimisation) is 

then performed across these coarse networks such that they are optimised using the global properties from the 

original network. The second phase is called refinement and involves successive drawings of fine networks 
                                                                 
1 http://giraph.apache.org/ 
2 http://mpi-forum.org/ 
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computed from the smallest coarse networks. Finer networks are optimised using the locally determined 

properties from the related coarse network. As a result, it can decrease running time because the energy 

minimisation process considers only a small amount of neighbourhoods at once [226]. Many studies have 

proposed using the multilevel technique for force-directed algorithms [227-230]. There are also studies that 

extend the multilevel technique to the classical force-directed algorithms such as multilevel KK algorithm [30] 

and multilevel FR algorithm [24]. 

2.2.3 Force-directed algorithms with multidimensional scaling 

High-dimensional data usually have a large number of variables instead of a large number of duplicated 

records. The multidimensional scaling technique is widely used in force-directed algorithms for high-

dimensional data reduction. The objective of the multidimensional scaling technique is to find meaningful 

underlying dimensions so that observed similarities and dissimilarities from the investigated networks can be 

discerned easily. The principle behind multidimensional scaling was developed by Torgerson [231] which uses  

the distance of edges as a metric. Nodes are projected into a smaller space that satisfies the constraint of the 

metric (the distance of edges). Many studies have adopted multidimensional scaling for force-directed 

algorithms to visualise high-dimensional data in which the distances between pairs of data are preserved [201, 

232-239]. Multidimensional scaling is also useful for energy function minimisation modelling, as it can improve 

the layout of networks with high-degree nodes. Dwyer et al. [240] and Dzwinel et al. [241] proposed a 

multidimensional scaling KK algorithm [31] with the use of stress majorisation optimisation. The energy 

function proposed by Dzwinel et al. [241] is defined as follows: 

 𝐸 = 𝑘𝑛𝑛∑( ∑ 𝑑  
𝑛 2

𝑛𝑛

 ∈𝑂𝑛𝑛( )

+ 𝑐 × ∑ (1 − 𝑑 𝑘
𝑛 )2

𝑟𝑛

𝑘∈𝑂𝑟𝑛( )

)

𝑁

 

 
(

20) 

where 𝑘𝑛𝑛 and c are constants and configured by users. 𝑑  
𝑛  is the distance of node 𝑖 and 𝑗 in the visual drawing. 

𝑂𝑛𝑛(𝑖) is the nearest neighbourhood of node 𝑖 (i.e. hop count equals to 1). 𝑂𝑟𝑛(𝑖) is the random neighbourhood 

of node 𝑖 (i.e. hop count greater than 1).  

3 APPLICATIONS OF FORCE-DIRECTED ALGORITHMS 

This section reviews five categories of application domains in which force-directed algorithms have 

been adopted: (a) aesthetic drawings for general networks, (b) component placement and scheduling in high-

level synthesis of very-large scale integration (VLSI) circuits design, (c) information visualisation, (d) biological 

network visualisation, and (e) node placement and localisation in sensor networks.  

3.1 FORCE-DIRECTED ALGORITHMS IN AESTHETIC DRAWINGS FOR GENERAL 

NETWORKS 

Force-directed algorithms can be used to produce schematic drawings from network topology alone, 

even without additional information about its nodes and edges. However, many applications of force-directed 

algorithms involve an implicit aesthetic problem in how to schematise topological renderings. The importance of 

such schematics is that its depiction can significantly influence how the topology is understood. For example, 

what are the aesthetic properties of the most coherent schematics? How can the aesthetic quality of schematics 

be measured? To understand these questions, we need to clarify the characteristics and objectives of a schematic. 

The fundamental factor is its layout. For example, in the polyline drawing (see Figure 5 (a)), each edge is a 

polygonal chain. Whereas in the straight-line drawing (see Figure 5 (b)), each edge is a straight-line segment. In 

the orthogonal drawing (see Figure 5 (c)) [8], each edge represents a horizontal and vertical segment. Numerous 

visualisation tools have been implemented for visualising networks in different layouts, most developed for 



straight-line drawing, such as GraphED3 [12], COMAIDE [13], LayoutShow [14], Graphael [15] and OpenOrd 

[16]. A visualisation tool based on orthogonal drawing is also proposed in [17].  

     
Figure 5 (a) Polyline drawing  (b) Straight-line drawing  (c) Orthogonal drawing 

Creating aesthetically appealing schematics has the practical aim of revealing a structure‘s pattern, 

rather than being merely a quest for the beautiful [18]. Therefore, researchers have defined the properties of a 

schematic based on its fundamental factors. Force-directed algorithms can be used to produce schematics that 

adhere to the properties of aesthetic drawing [9, 19, 20]. The properties of aesthetic drawing include : 1) edge 

lengths should be uniform; 2) the number of edge crossings should be minimised; 3) the size of crossing angles 

should be uniform; 4) the crossing angle should be minimised; 5) the standard deviation of edge length should 

be low; 6) the angle formed by any two neighbouring edges should be minimised; 7) the number of bends in 

polyline edges should be minimised; 8) nodes and edges should be affixed to an orthogonal drawing; and 9) the 

network should be represented as symmetrically as possible. In [21], Tunkelang proposed a force-directed 

approach for drawing undirected graphs. It is based on the accumulated force model that includes repulsive and 

attractive forces. Repulsive forces are computed between any two nodes and attractive forces are calculated 

between two adjacent nodes. Repulsion among nodes are used to avoid situations where nodes are placed too 

close to each other. Attraction forces are used to prevent nodes from being too far away from each other. 

According to the principles of the accumulated force model [22], nodes pull far away from each other if they are 

not adjacent. Besides, the model tries to maintain uniform edge lengths among adjacent nodes to minimise edge 

crossings. The repulsive and attractive forces of the proposed algorithm are defined as follows: 

 𝑓𝑟(𝑑) =
𝑤𝑟

𝑑2
 (21) 

 

 𝑓𝑎(𝑑) = 𝑤𝑎𝑑 (22) 

where 𝑑 is the length of edge and 𝑤𝑟 and 𝑤𝑎 are constants. The objective of the algorithm is to find an optimal 

value 𝑑 so that the sum of attractive and repulsive forces (i.e. 𝑓𝑟(𝑑) + 𝑓𝑎(𝑑) ) is minimal. In addition, a force-

directed algorithm was also proposed to produce schematics based on the fitness function of a genetic algorithm 

(GA) [23]. A number of studies have adopted similar approaches in the literature. Due to the page limit, we 

summarise them in terms of the models used and the property of the aesthetic drawing in Table 1. 

 

Table 1 Forced-directed algorithms for aesthetic visual drawings. C
atalo

g
u

e
 

Property of aesthetic drawing 

Adopted by 

proposed force-

directed 

algorithms 

Models used in force-directed 

algorithms 

N
o

d

e
 

Distribute nodes evenly [2], [22], [24], Accumulated force model 

                                                                 
3 http://www3.cs.stonybrook.edu/~algorith/implement/graphed/implement.shtml 
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[25], [26], [27], 

[28] 

[29] Combinatorial optimisation model 

[30] 
Energy function minimisation model 

with a multiscale approach 

[31] Energy function minimisation model 

[23] 
Energy function minimisation model 

with a fitness function in GA 

Cluster similar nodes [32] Energy function minimisation model 

Nodes should not overlap [33] Accumulated force model 

Nodes that are not adjacent should be far 

away from each other 

[21] Accumulated force model 

[29] Combinatorial optimisation model E
d

g
e
 

Minimise edge crossings  

[2], [21], [22], 

[24], [26], [27], 

[28], [34] 

Accumulated force model 

[29] Combinatorial optimisation model 

[35] Multilevel force-directed algorithm 

[36], [37] Energy function minimisation model 

Minimise edge bends  [35] Multilevel force-directed algorithm 

Keep edge lengths uniform  

[2], [21], [22], [24] Accumulated force model 

[31] Energy function minimisation model 

[23] 

Energy function minimisation model 

with an additional fitness function of 

genetic algorithm 

[30], 
Energy function minimisation model 

with a multiscale approach 

Minimise edge length  

[28] Accumulated force model 

[23] 

Energy function minimisation model 

with an additional fitness function of 

genetic algorithm 

O
v

er

all 

lay
o

u
t 

Display of symmetries  [25], [26] Accumulated force model 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA


[31], [37] Energy function minimisation model 

[30] 
Energy function minimisation model 

with a multiscale approach 

[23] 

Energy function minimisation model 

with an additional fitness function of 

genetic algorithm 

Maximise the angles among incident edges  

[28], [38] Accumulated force model 

[35] Multilevel force-directed algorithm 

[36] Energy function minimisation model 

[23] 

Energy function minimisation model 

with an additional fitness function of 

genetic algorithm 

[39]  

The angles between edges incident on the 

same node should be as uniform as possible  

[28], [39] Accumulated force model 

[36] Energy function minimisation model 

[23] 

Energy function minimisation model 

with an additional fitness function of 

genetic algorithm 

Orthogonality [17], [40] 

Accumulated force model with an 

additional octilinear magnetic force 

[41] for orthogonal drawing 

Minimise the size of visual drawing  [37] Energy function minimisation model 

3.2 FORCE-DIRECTED ALGORITHM IN COMPONENT PLACEMENT AND SCHEDULING IN 

VLSI CIRCUITS DESIGN 

 Technical Terms such as ‗module‘, ‗cell‘, ‗pin‘ and ‗component‘ are widely used in the studies of very-

large-scale integration (VLSI) circuits. They are similar to the concept of nodes in graph theory. To make the 

terms consistent in this survey, we use the term ‗node‘. Force-directed placement algorithms and force-directed 

scheduling are widely used in the design and manufacturing for VLSI circuits. An example of components from 

a VLSI circuit board is illustrated in Figure 6 (a) (generated by the visual5602 simulator [42]). The roadmap and 

approaches for these techniques are discussed in the following subsections. 
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(a)      (b) 

Figure 6 Visualisations of (a) components of a VLSI circuit (b) a clustered network. 

3.2.1 Force-directed placement algorithms 

The nodes in VLSI circuits can be integrated circuits, transistors, resistors and capacitors. The 

interconnection topology of the VLSI circuits is known. The objective of force-directed placement algorithms in 

this context is to determine the optimal location of every node with respect to every other node such that the 

length of edges in the interconnection topology is minimised [43]. Force-directed placement algorithms can 

obtain fairly non-overlapping placements on circuit boards without the use of additional means of optimisation 

[44] and, as such, have proven popular in applications to VLSI circuit boards since the 1960s [45-51]. 

3.2.1.1 Pioneer approaches 

 Fisk and Isett [45] pioneered a system called ACCEL using two forces (i.e. attractive and repulsive 

forces) for the placement of nodes. Urban et al. [47] proposed a system called SHARPCLAW using similar 

forces [45]. Quinn and Breuer [46] and Quinn Jr [43] proposed similar systems based on Hooke‘s Law, with 

repulsive and attractive defined as follows: 

 

 
𝐹𝑟(𝑢, 𝑣) = −

 𝑟

√
(𝑥𝑢 − 𝑥𝑣)

2

(𝑤𝑢 − 𝑤𝑣)
2 +

(𝑦𝑢 − 𝑦𝑣)
2

(𝑕𝑢 − 𝑕𝑣)
2

 

(23) 

 

 𝐹𝑎(𝑢, 𝑣) = − 𝑎√
(𝑥𝑢 − 𝑥𝑣)

2

(𝑤𝑢 − 𝑤𝑣)
2
+
(𝑦𝑢 − 𝑦𝑣)

2

(𝑕𝑢 − 𝑕𝑣)
2
 (24) 

where  𝑟  and  𝑎  are the constants for repulsive and attraction forces, 𝑥𝑢 , 𝑦𝑢  are the 𝑥 -coordinate and 𝑦 -

coordinate of the node 𝑢. 𝑤𝑢 and 𝑕𝑢 are the width and height of the node 𝑢.  

3.2.1.2 Modern approaches 

 Numerous notable force-directed placement algorithms and open-source systems have been developed 

since the 1990s. Most are based on solving a quadratic cost function to optimise node placement and achieve 

minimal edge lengths on the circuit board [52]. Force-directed relaxation methods are often used to solve the 

quadratic cost function. Force-directed relaxation is an iterative method in which nodes are either assigned 

random or fixed locations on initiation. One node is then selected at each iteration and moved to a target point 

determined by the forces or cost functions defined in the force-directed placement algorithms [53]. Popular 



algorithms include Kraftwerk [54], Kraftwerk2 [55], FAR [56], mFAR [57], FDP [58, 59], FastPlace [60], 

FastPlace 3.0 [61], RQL [62], SimPL [63], etc., the objective of which is to evenly distribute electromechanical 

components (nodes) on the circuit board, minimise the wire (edge) length and produce an overlap-free layout 

[64]. For example, the Kraftwerk [54] algorithm formulates the quadratic cost function 𝐹 defined as follows: 

 𝐹 = ∑
1

2
𝑢,𝑣∈𝑉

(𝑤𝑢𝑣, × (𝑥𝑢 − 𝑥𝑣)
2 + 𝑤𝑢𝑣,𝑦 × (𝑦𝑢 − 𝑦𝑣)

2) (25) 

where 𝑥𝑢  and 𝑦𝑢  are 𝑥 -coordinate and 𝑦 -coordinate of node 𝑢 . 𝑤𝑢𝑣,  is the weight of edge 𝑢𝑣  on 𝑥 -axis 

(horizontal), 𝑤𝑢𝑣,  is the weight of edge uv on 𝑦-axis (vertical). The weight used in the 𝑥-axis and 𝑦-axis from 

equation (25) is different because the node (electromechanical component) placed on the VLSI circuit board is 

quadrilateral. We also found several extensions of the Kraftwerk algorithm [54] proposed for application in 

VLSI circuits [65-68]. A similar algorithm called FastPlace was proposed by Viswanathan and Chu [60]. 

FastPlace is also based on a force-directed relaxation precept that aims to evenly distribute nodes on the circuit 

board. This can be done by minimising the cost function, which is similar to equation (25). In contrast to others, 

Viswanathan and Chu [60] applied a post-processing technique called ‗cell shifting‘ to reallocate the positions of 

nodes that overlap as a result of force-directed placement. Pan et al. [61] also proposed an improved extension 

of the FastPlace algorithm, called FastPlace 3.0, which adopts a multilevel technique and uses congestion 

constraints [69] to place nodes evenly.  

3.2.1.3 Partitioning and clustering based approaches 

 Goto [70] used a force-directed placement algorithm to divide nodes on the circuit board into two parts: 

an initial placement and an iterative improvement [71]. Nodes have pre-assigned (fixed) positions in the initial 

placement, and the force-directed algorithm calculates node locations during the improvement phase only. An 

algorithm based on [70] was proposed by Chang [72]. The objective of the algorithm is to find optimal regions 

on the circuit board to place nodes. The algorithm extends the median formulation proposed by [70] which 

identifies optimal regions and then applies a force-directed algorithm to calculate nodal positions within each 

optimal region. A force-directed placement algorithm based on clustering was also proposed by Odawara et al. 

[73] in which ‗seed elements‘, such as CPU and ROM from the circuit board, are first identified. Nodes close to 

seed elements are then grouped together to construct clusters. Finally, the relative position of each cluster is 

calculated by the force-directed algorithm. A similar system adopted a clustering technique was suggested by 

Alupoaei and Katkoori [74]. In Alupoaei‘s algorithm, clique partitioning heuristics [75] were used to cluster 

nodes and a force-directed algorithm based on Hooke‘s Law [46] was used to determine node placement and to 

minimise edge lengths on the circuit board. In [76], Vorwerk and Kennings [76] introduced a multilevel 

clustering algorithm to extend the algorithm proposed by [59]. The Hybird First Choice [77] clustering method 

was used in the Vorwerk and Kennings‘s algorithm in order to improve node placement. 

 

3.2.1.4 Fixed-points and pseudo edges additional approaches 

 The placement of standard cells is another major application in VLSI circuits. Standard cells function as 

nodes with standard heights but varying widths. Numerous studies focus on the placement of standard cells. For 

example, some have used the cost function from the Kraftwerk algorithm [54] to determine the placement of 

standard cells [65]. Chou and Lin [78] located standard cells by adding additional pseudo-edges on the circuit 

board. In this algorithm, critical paths on the circuit board are first identified. Pseudo-edges will then attach to 

nodes that are close to critical paths to pull the position of nodes closer to the critical paths. All pseudo-edges are 

removed when the placement is completed. In addition, Hu and Marek-Sadowska [56] introduced an algorithm 

called FAR to add additional fixed-points (nodes). A fixed-point is a pseudo-node connected to a real node on a 

circuit board. Three types of fixed points are defined by [56]: controlling fixed points are used to keep the 

placement of a node unchanged, perturbing fixed points are used to disturb the current placement, and 

constraining fixed points are used to restrict the movement of a node. In another example, a flat force-directed 

placement algorithm called SimPL was proposed by Kim et al. [63] that does not rely on clustering. SimPL has a 
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range of variants [79-82], all of which adopt a top-down geometric partitioning method called a look-ahead 

legaliser [83] to remove nodal overlap. SimPL‘s variants add fixed-points and pseudo-edges to produce even 

nodal distributions, for which the concept of fixed-points and pseudo-edges are adopted from the FAR algorithm 

[56]. In addition, a multilevel force-directed placement algorithm based on the energy function minimisation 

model [65] and fixed-point addition [56] was proposed by Hu and Marek-Sadowska [57]. 

3.2.1.5 Heuristic and application domain dependent approaches 

 Forbes [84] proposed a heuristic approach to accelerate the force-directed placement algorithm 

proposed by Fisk and Isett [45]. The objective of the heuristics is to reduce the total number of iterations of the 

force-directed placement algorithms. The movements of nodes during previous iterations are used to predict the 

position of a node in one or more future iterations. Spindler et al. [55] proposed an extension called Kraftwerk2, 

which is based on previous work [85]. The objective of the Kraftwerk2 algorithm is to balance the density of 

nodes and reduce and/or prevent any unused area (free space) of circuit board (i.e. save the space of circuit 

board). Two types of nodes are defined in the Kraftwerk2 algorithm. One has a fixed initial position (i.e. FN) 

and the other does not (i.e. MN). Only positions of the MN need to be determined in the Kraftwerk2 algorithm. 

Moreover, three forces are defined in the algorithm: Net Force 𝐹𝑉
𝑛𝑒𝑡, Move Force 𝐹𝑉,𝑢

𝑚𝑜𝑣𝑒  and Hold Force 𝐹𝑉
ℎ𝑜𝑙𝑑. 

The force equation of the Kraftwerk2 algorithm is the sum of the three forces and defined as follows: 

 𝐹 = 𝐹𝑉
𝑛𝑒𝑡 + 𝐹𝑉,𝑢

𝑚𝑜𝑣𝑒 + 𝐹𝑉
ℎ𝑜𝑙𝑑  (26) 

The forces of the Kraftwerk2 algorithm use concepts from a generic supply and demand system [86]. Spindler et 

al. [55] stated that the Net Force 𝐹𝑉
𝑛𝑒𝑡 is used to minimise edge length. However, nodes will overlap when the 

edge length is too short. Therefore, Move Force 𝐹𝑉,𝑢
𝑚𝑜𝑣𝑒  and Hold Force 𝐹𝑉

ℎ𝑜𝑙𝑑  are added to the Kraftwerk2 

algorithm to compensate the Net Force 𝐹𝑉
𝑛𝑒𝑡 as a way to reduce nodal overlap. Interested readers can refer to 

Nam and Cong [86] for detailed definitions and explanations about the generic supply and demand system.  

Heuristic approaches were also used for the placement of standard cells. A heuristic force-directed 

algorithm for the placement of  standard cells was proposed by Hur et al. [87]. Congestion removal heuristics 

[69] are applied in Hur et al.‘s algorithm to remove nodal overlaps. Additionally, a force-directed placement 

algorithm for determining the location of standard cells in 3D ICs (integrated circuits) away from high-

temperature areas was also introduced [88]. 

Floor-planning is an application in VLSI closely related to placement. The goal of floor-planning 

algorithms [89, 90] is to develop a placement plan to decide topological proximity and the appropriate shapes 

and orientations of each block. A placement algorithm using the maze searching technique [91] was proposed by 

Mo et al. [92]. The algorithm was designed to minimise edge lengths on a circuit board. The maze searching 

technique is able to find the shortest path from a given node to another given node. The approach proposed by 

Mo et al. applies force-directed algorithms to the placement of nodes first and then uses the maze searching 

technique to re-route paths (edges) on the circuit board and minimise edge lengths. 

 Minimising the timing delay of circuits is another important task for VLSI. Force-directed placement 

algorithms based on Kraftwerk [54] proposed by Rajagopal et al. [93] aim to optimise the edge lengths and 

minimise the timing delay on the circuit board. A similar approach was proposed by Saxena and Halpin [94] to 

optimise the timing delay of circuits, which improves the repeater insertion technique [95] by using a force-

directed approach based on Kraftwerk [54]. Repeater insertion techniques can reduce the time delay associated 

with long wire lines in circuit. In addition, Goplen et al. [96] proposed an algorithm to reduce repetitions during 

placement in which weightings [59] are used to reduce the repeater count. In [96], the cost function is adopted 

from Goplen‘s algorithm [65].  

Besides timing delay minimisations, density information can also be used to improve force-directed 

placement algorithms [62, 97]. For example, improved versions of cell-shifting techniques were proposed by 

Viswanathan et al. [62]. These techniques adopted a Density-Aware Module Spreading algorithm [98] and 



extended the cost function of quadratic optimisation from [65] to improve the placement of nodes on circuit 

boards. Viswanathan et al. [62] used the density information to prevent nodes from being placed on areas that 

already contain high densities of edges and nodes. 

 Mixed-size integrated circuit (IC) design, in which the network contains a large number of nodes and 

macros, is also widely used in VLSI. In most cases, the magnitude (size) of macro force is larger than the size of 

nodes [99]. For this reason, placement algorithms should use smoothing approaches to place both nodes and 

macros on the chip areas simultaneously. A force-directed placement algorithm called FDP was proposed for the 

placement of mixed-size integrated circuits [58, 59]. The algorithm uses a dynamic weighting [100] of spreading 

forces. The cost function of FDP is defined as follows: 

 𝐹 = ∑
𝑎𝑢𝑣

|𝑝𝑢
  1 − 𝑝𝑣

  1|
𝑢,𝑣∈𝑉

(𝑝𝑢
 − 𝑝𝑣

 )2  

(27) 

where 𝑎𝑢𝑣 represents the weight of the edges connecting node 𝑢 and 𝑣. 𝑝𝑢
  and 𝑝𝑢

  1 are the position of node 𝑢 at 

iteration 𝑖 and 𝑖 − 1, respectively. The objective of FDP algorithms is to minimise the cost function in equation  

(27).  

 Placement algorithms for 3D Field Programming Gate Array (FPGA) [101] consisting of multiple two-

dimensional layers have become popular in recent studies. A low temperature simulated annealing method [102] 

can be used to determinate the final 3D layer from the two-dimensional layers. The latest 3D FPGA applications 

can be found in force-directed algorithms, such as those using the force-directed placement algorithm to 

minimise the edge lengths on each two-dimensional layer [103]. Integrating optical devices into the electronic 

communication system NoC (Networks-on-Chip) [104] is one example. The PLATON algorithm is proposed by 

[105] to place overlap-free Photonic Switching Elements (PSEs) on the circuit board. PSEs are components used 

in optical networking. 

3.2.2 Force-directed scheduling algorithms 

Force-directed scheduling algorithms are useful in High Level VLSI Synthesis systems [106-109]. An 

algorithm‘s description of a design behaviour can be interpreted by high-level synthesis [108]. For example, the 

context of encoding algorithms can be interpreted by high-level synthesis such that the hardware 

encoder/decoder algorithm can be implemented on integrated chips. Force-directed scheduling algorithms 

schedule instructions and operations for high-level synthesis to optimise the distribution of operations and 

reduce resource expenditure. 

 The initial force-directed scheduling algorithm was first proposed by Paulin and Knight [110] and, like 

other force-directed algorithms, it obeys Hooke‘s Law in physics. Paulin et al.‘s algorithm attempts to balance 

the distribution of operations by decreasing concurrency of operations that make use of the same hardware 

resources. In the initial version of force-directed scheduling for the behavioural synthesis, proposed in Paulin 

and Knight [111], operations are divided into a number of steps, all of which aim at reducing the number of data 

buses, storage units and functional units while maintaining the concurrent operations assigned to them without 

lengthening the total execution time. Paulin and Knight [112] presented a force-directed scheduling algorithm to 

minimise interconnected costs of register allocation in high-level synthesis. Variants and extensions based on 

this pioneering work have been developed and reported in [113-122]. Classical scheduling has been used to 

minimise resources by finding a feasible schedule 𝜏 that minimises the resource costs. The schedule of classical 

scheduling is defined as follows: 

 𝑓(𝜏) =∑𝑤𝑟

𝑟∈𝑅

𝑁𝑟(𝜏, 𝑡)𝑡∈𝑇
𝑚𝑎  (28

) 

where 𝑅 is a set of resource types in which 𝑟 ∈ 𝑅. 𝑤𝑟 is the cost of a resource type 𝑟 and 𝑡 is the span of time 

required of a schedule 𝜏. However, solving equation (28) is a NP-complete problem. Therefore, Verhaegh et al. 
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[123] presented an iterative approach for the forced-directed scheduling algorithm used in PHIDEO [124] 

silicon compilers. The cost function of their iterative approach is defined as follows: 

 𝑓(𝑟) = ∑𝑤𝑟𝑢𝑟
𝑟∈𝑅

+∑𝑤𝑟 (𝑁𝑟(𝜏, 𝑡) − 𝑢𝑟)𝑡∈𝑇
𝑚𝑎 

𝑟∈𝑅

   (29) 

 𝑢𝑟 =
1

𝑚
|*𝑖 ∈ 𝛰|𝑟 ∈ 𝑟+| (30) 

where 𝑢𝑟 is a constant based on the average number of operations for resource type 𝑟 over a schedule in which 

𝑚 is the time span on a given schedule. 𝑤𝑟 is the cost for a resource type 𝑟. 𝑁𝑟(𝜏, 𝑡) is the number of operations 

of resource type r scheduled at time t in schedule 𝜏 . The objective is to minimise the cost function 𝑓(𝑟) . 

Verhaegh et al. [125] also presented an iterative force-directed scheduling algorithm which reduces the time 

span of an entire operation schedule, as used in the silicon compiler PHIDEO [124]. 

 Behavioural synthesis systems are generally designed for single tasks. Lee et al. [114] proposed a 

heuristic force-directed scheduling algorithm for multi-thread, real-time and multi-tasking synthesis systems. 

Lee et al.‘s algorithm is based on the 𝐴∗ search technique and the force-directed scheduling algorithm proposed 

by Paulin et al. [111]. Multi-tasking synthesis systems contain a set of 𝑘 processors and a set of 𝑛 periodic real-

time operations. The principle is to assign each operation to one of the processors in such a way that all 

operations can be scheduled within their time constraints. Lee et al.‘s algorithm used the 𝐴∗ search technique to 

select processors that minimise the cost and satisfy timing constraints. Moreover, Abdel-Kader [115] used a 

force-directed scheduling algorithm derived from [111] to optimise loop scheduling in high-level synthesis. 

Loop scheduling is designed for repetitively performing a set of operations that functions similar to a loop in 

programming. Some extensions of [111] work were also proposed for reconfigurable architectures. For example, 

a force-directed scheduling for schedule operations in NATURE [126] was proposed by Zhang et al. [116]. 

NATURE is a hybrid nano/CMOS reconfigurable architecture. Force-directed scheduling algorithms are also 

useful for Dynamic Reconfigurable FPGAs (DRFPGAs) [117], owing to overlaps in the logic of DRFPGAs as 

time-multiplexed. Because of this, DRFPGAs need to be partitioned into multiple sub-circuit boards, thus 

possibly resulting in different execution times because sub-circuit boards are executed in parallel. Force-directed 

scheduling algorithms can be used to partition sequential circuits to optimise feasible partitions that reduce the 

logic and communication component costs while maintaining maximal throughput.  

Force-directed scheduling algorithms for power optimisation problems in VLSI high-level synthesis 

systems have been popular since 2000. These algorithms are based, again, on the work of [111]. For example, 

some have used a force-directed scheduling algorithm to optimise power consumption while adhering to the 

resource and latency constraints in a behavioural synthesis system [119]. Gupta and Katkoori [120] also used a 

force-directed scheduling algorithm to optimise power consumption at the behavioural synthesis system. They 

reduced the overall dynamic power by reducing switched capacitance component usage during VLSI circuit 

design. Moreover, Allam and Ramanujam [121] proposed a force-directed scheduling algorithm for power 

optimisation that minimises the peak and average consumption. This can be done by assigning the smallest 

possible input voltage to every operation in a way that minimises power consumption.  

Advanced driver assistance functions for intelligent automotive systems, such as predictive break 

assistants, adaptive cruise control and adaptive lane assistance are designed for processing sensor data. 

Schönwald et al. [122] proposed a force-directed scheduling algorithm for advanced drivers to map processes to 

processor cores with time and resource constraints. The objective of this work is to reduce the communication 

latency and increase the throughput to process sensor data. Similarly, Schönwald et al. [127] proposed a force-

directed scheduling algorithm to consider shared memory architectures during the mapping of software 

processes on multiprocessor system-on-chip (MPSoC) cores. Schönwald et al. [127] suggested the use of 

smFDM (shared memory aware force-directed mapping) to determine the placement of processor cores. 



Therefore, communication conflicts and memory access conflicts are reduced or even avoided. Force-directed 

scheduling algorithms were also proposed by Omnés et al. [118] to schedule real-time tasks to be executed on 

embedded multimedia systems. The work in Sethuraman and Vemuri [128] used a force-directed scheduling 

algorithm to optimise bandwidth in NoC (Networks-on-Chip) architecture by scheduling an optimal size 

(dimension mesh) of the network circuit.  

3.3 FORCE-DIRECTED ALGORITHMS IN INFORMATION VISUALISATION 

The primary objective of network information visualisation is to explore hidden patterns in networks 

and to visualise them in a simple manner. Information networks can be social networks, human relation 

networks, networks of business workflow, transportation maps, etc. An example visualisation of a clustered 

network is illustrated in Figure 6 (b) which is generated by using the vis.js visualisation tool [129]. The 

application of information visualisation is wide and complex. It is therefore impossible to visualise networks in 

orthogonal form or in a planar visual drawing in all cases. Moreover, certain information networks‘ nodes and 

edges may contain additional properties (attributes). These properties do not exist in general networks. Because 

of this, applications of information visualisation may use variant layouts to present the data. For example, metro 

map diagramming is useful for visualising the transportation map as a schematic [40]. With fisheye views [130, 

131], the network representation can enlarge regions located near specified nodes while contracting distant 

regions by varying edge length. However, while enlarging a special region may be useful in two-dimensional 

planes, it may not be applicable for high-dimensional data. Parallel coordinate diagramming can be used to 

project high-dimensional data onto two dimensions [132]. Parallel coordinate diagrams draw 𝑛 vertical lines 

equally spaced to represent the n-dimensional space. Corresponding nodes are drawn on the dimensional space 

(vertical line) and the line represents the relation between a pair of nodes [133]. Lombardi-Style diagrams [134] 

are useful for information visualisation in which the edges of the visual drawing are curvilinear [135].  

 Even with these techniques, the amount of complexity makes visual interpretability for humans difficult. 

Chae [136] suggested visualising large networks on a tiled monitor wall, in which monitors are placed next to 

each other and data distribution related to their corresponding display nodes are only displayed. Edge crossing 

deduction is also crucial for visualising information about large networks, as this makes the representation 

appear cluttered and ugly. One example is the 1/4-SHPED (i.e. Symmetric Homogeneous Partial Edge Drawing), 

as proposed by Bruckdorfer et al. [137]. Nodes of 1/4-SHPED are represented as points and edges as two pieces 

(also called stubs) of a straight-line segment, each adjacent to a node, without any edge crossings, and with stub 

size 1/4 of the total edge length. Edge bundling is another technique which group edges into bundles to decrease 

the density of lines for reducing clutter [131-133]. Moreover, Debiasi et al. [33] proposed an accumulated force 

model to visualise the network by geographical flow map [33] as a way to prevent edge crossings. Each flow 

consists of start, intermediate and target nodes and three forces are defined in the proposed algorithm: 

electrostatic (attractive) force, stress force and rejected (repulsive) force. The force equation of node 𝑣 is the 

sum of the three forces and can be defined as follows: 

 𝐹(𝑣) =∑ 𝐹𝑒(𝑣, 𝑠) +
𝑠∈𝑆

∑ 𝐹𝑟(𝑣, 𝑡) + 𝐹𝑠(𝑣)
𝑡∈𝑇

 (31) 

where 𝑆 is the intermediate nodes interacting with node 𝑣. 𝑇 is the nodes near to the node 𝑣. The purpose of 

electrostatic force (𝐹𝑒) is similar to attractive force, which is defined as follows: 

 𝐹𝑒(𝑣, 𝑠) =
1

‖𝑣 − 𝑠‖
× 𝑣 − 𝑠̂ (32) 

where 𝑣 − 𝑠̂ is the unit vector of node 𝑣 and 𝑠. ‖𝑣 − 𝑠‖ is the norm of node 𝑣 and 𝑠. Stress force enables the 

node to move towards the flow with higher magnitude. The definition of stress force is as follows: 

 𝐹𝑠(𝑣) = (𝑣  1 − 𝑣) + (𝑣 − 𝑣  1) (33) 

where 𝑣  1 is the ancestor node of 𝑣 and 𝑣  1 is the child node of 𝑣. Rejected forces are used to avoid any 

overlapping between intermediate and target nodes, and are defined as follows: 
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 𝐹𝑟(𝑣, 𝑡) = −1 × 𝐹𝑒(𝑣, 𝑠) (34) 

There are approaches which utilize forces and reduce clutter for graph visualisation in which the size of 

nodes in the graph is the variant. Cui et al. [134] used a force-directed model to visualise word clouds in which 

the size of a word (i.e. each word represents a node) is determined by the word frequency in the time slot. 

Moreover, Gu et al. [135] adopted the FR algorithm to visual large texts and image datasets on a large video 

wall. We summarise the relevant studies on information visualisation, their objectives, and corresponding force-

directed algorithms used to visualise the networks in Table 2. 

Table 2 Information visualisation studies that adopted force-directed algorithms. 

Force-directed 

algorithm adopted 

by the study 

Study Objective of the study 

Eades‘s algorithm 

[1] 
- To visualise networks using tree-structured hierarchies 

- Increase the readability of a network 

[2] - To make edges conform to particular orientations 

[3] 
- To transform the Extensible Stylesheet Language Transformations 

(XSLT) document to network layout. XSLT is a language for 

transforming vector images and documents in the XML encoding 

[4] 
- To visualise networks with non-uniform nodes (i.e. the size and shape 

of nodes are variant) 

[5] - To visualise the relation of people in online social networks 

[6] - To visualise networks using grid layouts 

[7] - To visualise web traffic  

FR algorithm 

[8] - To visualise networks in which nodes have nontrivial sizes 

[9] 

- To produce visual drawings of hypergraphs  

- Hypergraphs can be viewed as an extension of classical networks in 

which an edge can join any number of vertices 

[10] 
- To visualise networks with non-uniform nodes (i.e. the size and shape 

of nodes are variant) 

[11] - To visualise exploration of network traffic over time 

[12] - To visualise email networks 

[13] - To visualise transportation networks 

[14] - To visualise networks in which edges are curvilinear (Bézier curve) 

[15] 
- To visualise weighted networks in which each edge is associated with a 

real number representing its importance 

[16] - To assess homophily [17] in networks 

[18] - To visualise the actors holding neutral opinion polarities 

[19] - To visualise the volume of movement in flow maps 

KK algorithm 

[20] 

- To show proximity between nodes such that their distances in the 

visualisation reflect distances in the network  

- topology 

[21] - To visualise networks in which edges are curvilinear 

[22] - To visualise the structure of ER diagram 

[23] 
- To visualise the count of paper submissions for journal articles of 

natural and social sciences 

[24] - To animate networks over time 



Noack algorithm 

[25] 

[26] 

 
- To visualise the land and water networks of port transportation 

FA2 algorithm 

[27] 
[28] 

- To visualise the transaction patterns of Bitcoin networks 

Hachul algorithm 

[29] 
[30] 

- To use 𝑘-dimensional trese (a data structure of space partitioning for 

arranging nodes in a 𝑘-dimensional space) to visualise networks.  

3.4 FORCE-DIRECTED ALGORITHMS IN BIOLOGICAL NETWORK VISUALISATION 

Visualisation is an important way to capture the dependencies and interactions between different 

biological entities, and their sequential processes. The force-directed algorithm is one of the most popular 

approaches for the visualisation of biological networks. An example visualisation of a biological network is 

illustrated in Figure 7 (a) (which is generated by using the NGL molecular visualisation viewer [167]). 

Kerpedjiev et al. [168] developed a tool called 𝑓𝑜𝑟𝑛𝑎 to display the secondary structure of ribonucleic acid 

(RNA). In addition, Bang et al. [169] and Tuikkala et al. [170] proposed multilevel force-directed algorithms to 

visualise large protein networks and genetic interactions.  

  
(a)        (b) 

Figure 7 An example visualisation of (a) a biological network, (b) sensor localisation. 

Biological networks have more special attributes than average directed and undirected networks. 

Because of this, various researchers have proposed special layouts for the visualisation of genetic sequencing or 

other biological networks. Clustered layouts are commonly used to visualise protein interactions [171]. Gamma-

Clustering layouts were suggested for visualising large and complex biological networks [172]. Haplotype 

layouts [173] were also used to distinguish relationships among different sequences observed in biological 

networks [174]. There are also several studies that adopt force-directed algorithms to visualise the structure of 

molecules, biological pathways, protein networks, etc. Due to the page limitation, we summarise these studies in 

Table 3. 

Table 3 Visualisation studies that adopted force-directed algorithms for biological networks. 

Force-directed 

algorithm adopted by 

the study 

Study Objective of the study 

KK algorithm 

[175] - To visualise protein–protein interaction network 

[178] - To visualise protein–protein interaction network 

[185] 
- To visualise the structure of Alpha-helical transmembrane 

proteins 
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FR algorithm 

[176] 
- To use Schlegel diagrams [177] to visualise the structure 

of molecules 

[179], [180], [181] - To visualise biological pathways 

[182] 
- To visualise the structure of genes 

- Minimise edge-edge crossings 

[183] - To visualise the structure of genes 

[184] - To visualise microarrays 

[186] - To visualise biological pathways 

[187] - To analyse the connectivity patterns of brain parcellation 

[172] - To visualise large biological networks 

3.5 FORCE-DIRECTED ALGORITHMS IN NODE PLACEMENT AND LOCALISATION FOR 

SENSOR NETWORKS 

 Sensor networks are useful for monitoring animals, earthquakes and tsunamis [188], emergency 

message forwarding during disasters [189], etc. An example visualisation of sensor localization is illustrated in 

Figure 5 (b) (which is generated by using the OOMap service [190]). Because the exact location of the 

networked sensors (nodes) is often unavailable, force-directed algorithms are used to determine node placement 

or to locate boundaries to improve the network‘s coverage [191]. The strength of force is subject to the distance 

between two nodes and each node behaves as a source of force. Therefore, if the distance between two nodes is 

shorter/larger than a threshold, a repulsive/attractive force will be exerted on each other. If the distance is equal 

to the threshold, no force will act upon the nodes. Extensions of the FR algorithm were proposed for node 

placement in [192, 193]. There are also extensions based on a modified FR algorithm that estimate the 

approximate location of each node based on signal information [194, 195]. In [196], Cheong and Si proposed a 

heuristic KK algorithm for boundary detection. The proposed algorithm was optimised for sending emergency 

messages via Mobile Ad Hoc network if cellular networks are corrupted. Nodes on the boundary are responsible 

for forwarding emergency messages to nearly emergency stations. 

4 CONCLUSIONS 

In this paper, we present the survey of force-directed algorithms for schematic drawings and placement. 

This class of algorithms has been studied and implemented in biological network visualisation, information 

visualisation, sensor localisation and VLSI design. This survey covers classical force-directed algorithms and 

hybrid force-directed algorithms, in which parallel, multilevel and multidimensional scaling techniques are used. 

We also discussed the merits and deficiencies of force-directed algorithms and visualisation applications. For 

example, how network topologies are drawn can significantly affect viewers‘ understanding of the network. We 

also discussed the influences caused by the layout and position-assignment of visualised network nodes on how 

a user perceives the relationships in the network. To this end, we review and categorise force-directed 

algorithms from research areas such as: (a) aesthetic drawings for general networks, (b) component placement 

and scheduling in high-level synthesis of very-large scale integration (VLSI) circuits design, (c) information 

visualisation, (d) biological network visualisation, and (e) node placement and localisation for sensor networks. 

Our hope is that this survey not only provides an overview of existing force-directed algorithms, but also 

introduces them as effective tools for solving visualisation problems in different application areas.   
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