

Author's Post-Print (final draft post-refereeing)

NOTICE: this is the author’s version of a work that

was accepted for publication in Journal of Information

Visualization. Changes resulting from the publishing

process, such as peer review, editing, corrections,

structural formatting, and other quality control

mechanisms may not be reflected in this document.

Changes may have been made to this work since it

was submitted for publication. A definitive version was

subsequently published in Journal of Information

Visualization, 2019, 1473871618821740.

https://journals.sagepub.com/doi/abs/10.1177/147387
1618821740

https://journals.sagepub.com/doi/abs/10.1177/1473871618821740
https://journals.sagepub.com/doi/abs/10.1177/1473871618821740

Force-directed algorithms for schematic drawings and placement: a

Survey

Force-directed algorithms have been developed over the last 50 years and used in many application fields,

including information visualisation, biological network visualisation, sensor networks, routing algorithms,

scheduling, graph drawing, etc. Our survey provides a comprehensive summary of developments and a full

roadmap for state-of-the-art force-directed algorithms in schematic drawings and placement. We classified the

model of force-directed algorithms into classical and hybrid. The classical force-directed algorithms are further

classified as follows: (a) accumulated force models, (b) energy function minimisation models, and (c)

combinatorial optimisation models. The hybrid force-directed algorithms are classified as follows: (a) parallel

and hardware accelerated models, (b) multilevel force-directed models, and (c) multidimensional scaling force-

directed algorithms. Five categories of application domains in which force-directed algorithms have been

adopted for schematic drawings and placement are also summarised: (a) aesthetic drawings for general networks,

(b) component placement and scheduling in high-level synthesis of very-large scale integration (VLSI) circuits

design, (c) information visualisation, (d) biological network visualisation, and (e) node placement and

localisation for sensor networks.

Keywords: Force-directed algorithms; schematic drawing; force-directed placement; information visualisation.

1 INTRODUCTION

Force-directed algorithms have been developed over the last 50 years and adopted in numerous

application fields. For example, these include: visualising genetic structures automatically in biology, optimising

networks for parallel computer architectures, detecting clusters and hidden patterns in the social sciences,

placing and scheduling components for very-large-scale integration circuits (VLSI), and computing

undirected/directed networks (graphs) for information visualisation, etc. A schematic drawing is a representation

of the elements of a network using simple graphic symbols. Such drawing shows crucial components of the

network and the details that are not relevant to the information are omitted [1]. For example, a dot may be used

to represent a station in a subway map. In this case, the dot is used to provide key location information to the

users without causing any unnecessary visual cluttering. In some application domains, the size of the canvas and

the detailed arrangement of the elements in the drawing are constrained by certain technical limits. Force-

directed placement [2] is one of the approaches for the node placement in the schematic drawing. The placement

of nodes along the edges or in a specific region of the canvas are useful in VLSI applications. According to

statistics on annual paper submissions related to force-directed algorithms depicted in Figure 1 (a), force-directed

algorithms are very popular and have often been preferred over other algorithms since the 1980s. Figure 1 (a) and

Figure 1 (b) show a classification of force-directed algorithms by trends in paper submission and application

fields. According to our review, 38% of force-directed algorithm studies relate to schematics and the aesthetics

of network visualisation; 30% relate to VLSI applications, with 21% accounted for by placement and 9% by

scheduling; in approximately 20% of force-directed algorithm studies, they are applied for social information

visualisation; and biological network visualisation and sensor placement and localisation account for 10% and

3%, respectively. These statistics suggest that most applications of force-directed algorithms can be formulated

as a problem of network visualisation, which, in turn, can be understood as problem of combinatorial

optimisation — to find a visual drawing of an input network topology in a way that optimises functions of

interest.

We have adopted a simple approach to classify the papers which are related to force-directed

algorithms. The data sources of the papers reviewed in this survey are from ACM Digital Library [3] and Scopus

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:3

[4]. The paper submission count of force-directed algorithms classified by application fields is illustrated in

Figure 8. First, the papers reviewed in this survey were sorted by publication year. Next, they were categorised

into corresponding application domains. The results of the classification are illustrated in Figure 1(c). According

to our classification results, studies of force-directed algorithm applications in VLSI have the longest history.

The first VLSI study of force-directed algorithms was published in 1965 and this research domain remains

popular in 2017. Aesthetics drawing became popular around 1995 and its popularity is ongoing. By contrast,

force-directed algorithms for sensor placement and localisation are relatively new research domains. The first

publication in this area dates to 2004 and the publication count has increased since 2008. We also found

evidence of force-directed algorithmic applications for biological network visualisation dating back to 1995,

with publication counts increasing dramatically from 2003 (8 papers per year on average). Finally, studies of

force-directed algorithms for social information visualisation have been popular since 2005 and, to date, offer

the highest publication counts among all of the research fields.

Each of these applications relates to information visualisation broadly. Information visualisation allows

users to make better sense of network relationships than by simply looking at data in tabular form. However,

unsupervised visualisation cannot meet these objectives. How network topologies are drawn can significantly

affect how viewers understand the network. The layout and position-assignment of visualised network nodes

influence how a user perceives network relationships. Identifying visualisations that convey the appropriate

information to the user is thus crucial. Filtering and pattern analysis have also been applied for force-directed

algorithms to discover insightful relationships and reduce clutter. These methods are especially useful in the

visualisation of social data, in which metrics associated with each node are used to understand and identify

unexpected network patterns more effectively.

Force-directed algorithms face a number of challenges. Most visualisation problems are NP-hard; as

such, approximation methods and heuristics are often proposed, because an almost-global optimum is sufficient

for most applications. In addition, force-directed algorithms currently suffer from a number of technical

drawbacks. First, they are easy to converge to a localised optima. Second, even the hardware performance has

been improved; the running time of force-directed algorithms is still high when producing visualisations for

large networks. Third, it is time-consuming to fine-tune the parameters of a large class of networks because the

suitable parameters for a particular network class are often disadvantageous for other classes.

 Several literature reviews on force-directed algorithms have been published in recent years [5-10]. In

[10], Battista et al. presented an annotated bibliography of algorithms for visualisation of graphs. The algorithms

reported in their review can be used to visualise various types of graphs such as trees, general graphs, planar

graphs, directed graphs, etc. Force-directed algorithms for visualisation of straight-line drawings were also

reported in the bibliography. In [5], Gibson et al. reviewed algorithms for force-directed layouts, dimension

reduction in graph layout, and multilevel techniques for computational improvements. Gibson et al. also

evaluated force-directed algorithms based on aesthetic properties of the drawings such as minimising edge

crossings, achieving symmetry, and uniformity on edge nodes, etc. In [7], Tamassia et al. reviewed the

algorithms for symmetric graph drawing, tree drawing, spine and radial drawings, circular drawing, rectangular

drawing and force-directed drawing, etc. Tamassia et al. also summarised the algorithms and tools used in

different application areas such as computer security, education, computer networks, data analytics, graph

drawing and cartography, social networks and biological networks. In [11], Battista et al. reviewed the

algorithms for force-directed drawing, planer orthogonal –or- straight-line drawings, non-planar drawings, etc.

In their review, force-directed algorithms were categorised based on spring and electrical forces, barycenter

method, forces simulating graphs theoretic distance, energy functions and magnetic fields. In addition, aesthetic

properties such as edge crossings, minimisation of the area of the drawing, minimisation of the length of edges,

uniform edge length, uniform bends, symmetric property were also summarised.

In [6], Kobourov summarised spring systems and electrical forces in graph drawings such as graph

theoretic distances approach, stress majorisation, non-Euclidean approaches, and Lombardi spring embedders.

They also considered several classical algorithms in spring embedders layouts such as force-directed algorithms,

barycentric method, and multiscale methods for dynamic graphs. In [9], Brandenburg et al. compared five force-

directed algorithms for drawing graphs in which the positions of the nodes are randomised. Their experiments

aimed to evaluate the performance of force-directed algorithms in terms of uniformity in edge length and node

distribution. In contrast to previous surveys, in this paper, we provide a comprehensive summary and full

roadmap for the state of the art in force-directed algorithms in terms of latest research domains and models

including social information visualisation, biological network visualisation, sensor networks, routing algorithms,

scheduling, and graph drawing. An overview of the classification of existing force-directed algorithms is also

provided in this survey.

 In our survey, 230 papers related to force-directed algorithms have been reviewed. To find these papers,

we implemented a web mining tool using Java programming language to parse search results from the ACM

Digital Library [3] and Scopus [4]. We used four keywords (―force directed algorithms‖, ―force-directed

algorithms‖, ―force-directed‖ and ―force directed‖) to filter relevant papers. The search results from the ACM

Digital Library [3] contain the attributes such as authors, title, keywords, abstract and result highlight of papers.

The search results from Scopus [4] contain similar attributes except the highlights. Moreover, we applied

following filters to remove irrelevant and redundant results in order to improve the accuracy:

1. The abstract, highlights, the keywords, or the title of the paper must contain at least one of the four

keywords used in the searching.

2. Papers returned from partial match were omitted. For example, ―They force are applied … directed …

algorithm‖, ―… directed …‖, ―force …‖, ―…algorithm‖.

We also checked the first author and the title of the paper to remove duplicate publications. Figure 2 illustrates

state-of-the-art studies and milestones in various force-directed models, including the accumulated force model,

the energy function minimisation model, the combinatorial optimisation model, the multilevel model, the

multidimensional scaling model and the clustered model. Our findings suggest that many papers are application

studies, in which force-directed algorithms are used but without detailed formulation. Application studies

usually adopt and/or revise existing force-directed algorithms to achieve the objectives of specified tasks.

Because of this, our survey is divided into two parts. For those studies adopting force-directed algorithms to

resolve schematic drawings and placement tasks, we first summarise them in our survey in terms of application

domains and methods. We then conclude the formulation (model) of notable force-directed algorithms which

have been used in application discussed in the first part.

The structure of the survey is as follows: Section 2 presents an overview about the notable force-

directed algorithms that have been used most often across the different application domains. Section 3

introduces force-directed algorithms for applications in schematic drawings and placement. Section 4 concludes

the survey by summarising patterns across the literature.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:5

(a) (b)

(c)

Figure 1 (a) Annual paper submission count related to force-directed algorithms; (b) Catalogues of the papers

reviewed in this survey; (c) Paper submission trend on force-directed algorithms.

Figure 2 Studies of force-directed models.

1.1 NOTATIONS AND CONVENTIONS

For the purpose of the survey, the notation 𝐺 = (𝑉, 𝐸) represents a network 𝐺, including a set of nodes

𝑉 and edges 𝐸 between these nodes. The visual drawing of a network is a picture of a network that assigns a

position to each node and a curve to each edge. A connected network is a network in which for each pair 𝑢, 𝑣 of

nodes, there is always a path between 𝑢 and 𝑣.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:7

2 FORCE-DIRECTED ALGORITHMS

Force-directed algorithms can be divided into classical and hybrid algorithms according to their

characteristics and computational modelling. The overview of force-directed algorithms is illustrated in Figure 3.

Classical force-directed algorithms are usually based on physical laws, specifically in ways that simulate a

spring system. Full descriptions of classical force-directed algorithms are described in section 2.1. Hybrid force-

directed algorithms are designed for large and complex networks. These algorithms use heuristics to improve the

performance of classical force-directed algorithms. Hardware acceleration and multilevel methods are also

popular in improving the performance. Full descriptions of notable hybrid force-directed algorithms are

described in section 2.2.

Figure 3 Overview of force-directed algorithms.

The pioneer of force-directed algorithms, the Tutte algorithm, was first proposed in 1963 [197]. The

Tutte algorithm is based on the barycentric method [7, 198] and is applicable for tri-connected and planar graphs.

A tri-connected graph is a connected graph such that deleting any two nodes results in a graph that is still

connected. The force function of a node 𝑣 of the Tutte algorithm is defined as follows:

 𝐹(𝑣) = ∑ (𝑝𝑢 − 𝑝𝑣)

𝑢,𝑣∈𝐸

 (

1)

where 𝑝𝑢 and 𝑝𝑣 are the positions of node 𝑢 and 𝑣 . Solving the linear equations from the result of partial

derivatives of the force function of Tutte algorithm 𝐹 can obtain the updated 𝑥-coordinate and 𝑦-coordinate of

nodes. These linear equations are defined as follows:

 𝑥𝑣 =
1

𝑑𝑒𝑔(𝑣)
∑ 𝑥𝑢
𝑢,𝑣∈𝐸

 (

2)

 𝑦𝑣 =
1

𝑑𝑒𝑔(𝑣)
∑ 𝑦𝑢
𝑢,v∈𝐸

 (

3)

where deg(v) is the number of edges attached to node v. xv, yv are the x-coordinate and y-coordinate of node v.

An example of the Tutte algorithm is illustrated in Figure 4. Nodes 1, 2, 3, 4 and 5 in Figure 4 form a strictly

convex polygon. The Tutte algorithm first selects a strictly convex polygon from the graph, in which all nodes

on the convex polygon should have a fixed initial position. Therefore, nodes 1, 2, 3, 4 and 5 are assigned a fixed

initial position. The position of remaining nodes (i.e. 6, 7, 8) then can be computed by the Tutte algorithm.

Figure 4 An example of Tutte algorithm.

2.1 CLASSICAL FORCE-DIRECTED ALGORITHMS

2.1.1 Accumulated force models

Accumulated force models follow the simulation of a spring system, in which the length of the spring is

proportional to the force exerted by an extended spring. Repulsive and attractive forces are basic forces defined

in the accumulated force models. Repulsive force is computed for every node pair and attractive force is

computed for every adjacent node [199]. The sum of the values of repulsive and attractive forces for each node

are stored in the tempoarry variables, which can be used for updating the nodes‘positions. Most accumulated

force models follow Hooke‘s law [200] and the footsteps of Eades‘ algorithm [26]. Because of this, we first

introduce the principle of Eades algorithm in the section 2.1.1.1. We then introduce the successors of Eades

algorithm, Fruchterman-Reingold algorithm and ForceAtlas2 algorithm, in sections 2.1.1.2 and 2.1.1.3,

respectively.

2.1.1.1 Eades algorithm
The idea of Eades‘ spring-embedded algorithm is to model a network as a magnetised system with rings

representing nodes and the length of edges represented by the spring. Eades [26] was the first algorithm to

consider attractive and repulsive forces. The attractive force 𝑓𝑎 is applied to nodes that have a direct connection

by an edge (i.e. 𝑑(𝑖, 𝑗) = 1), and the repulsive force 𝑓𝑟 is applied to nodes that have an indirect connection (i.e.

𝑑(𝑖, 𝑗) > 1). The attractive and repulsive forces of Eades algorithm are defined as follows:

 𝑓𝑎(𝑖, 𝑗) = 𝐶𝑎 log
𝑑(𝑖, 𝑗)

𝑑0

(

4)

 𝑓𝑟(𝑖, 𝑗) = 𝐶𝑟
1

𝑑(𝑖, 𝑗)2

(

5)

where 𝑑(𝑖, 𝑗) is the distance between node 𝑖 and 𝑗, 𝑑0 is the ideal edge length, and 𝐶𝑎 and 𝐶𝑟 are the constants.

The aim of the algorithm is to find zero-force locations for all nodes to reach a state of equilibrium for the spring

system.

2.1.1.2 Fruchterman-Reingold algorithm

 The Fruchterman-Reingold (FR) algorithm [2] is based on Eades algorithm [26]. Like the Eades

algorithm, the FR algorithm uses two forces, with the attractive force (𝑓𝑎) and repulsive force (𝑓𝑟) defined as

follows:

 𝑓𝑎(𝑑) =
𝑑2

𝑘
 (6)

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:9

 𝑓𝑟(𝑑) = −
𝑘2

𝑑
 (7)

where 𝑑 is the distance between two nodes and 𝑘 is the constant of ideal pairwise distance. For the attraction

force, 𝑓𝑎 , 𝑘 can be written as 𝑎 × √
𝑊×𝐻

𝑛
, and can be written as 𝑟 × √

𝑊×𝐻

𝑛
 for the repulsion force, 𝑓𝑟; where 𝑊 is

the width of the canvas, 𝐻 is the height of the canvas, 𝑛 is the total number of nodes in the network topology, 𝑎

is a constant for the attraction multiplier, and 𝑟 is a constant for the repulsion multiplier.

 The FR algorithm is executed iteratively. In each iteration, all of the nodes are moved simultaneously

after the forces have been calculated. When updating the position of the nodes, the algorithm adds a

‗displacement‘ attribute to store the position offset of the nodes. At the start of each iteration, the initial values

of the displacement for all of the nodes are calculated using the repulsion force (𝑓𝑟). The algorithm uses the

attraction force (𝑓𝑎) to iteratively update the position of the nodes on every edge. Finally, it updates the position

offset of the nodes using the displacement value.

 The displacement scale, 𝑠 , is used as the termination condition of the FR algorithm. When the

displacement scale, 𝑠, is lower than the threshold value, 𝜀, the algorithm is terminated. When the algorithm is

initialised, the value of the displacement scale, 𝑠, is set to
𝑊

10
. This value is updated in each iteration according to

the iteration count and the maximum number of iterations set by the user.

2.1.1.3 ForceAtlas2 algorithm

 ForceAtlas2 (FA2) was proposed by Jacomy et al. [22] to satisfy speed and precision for network

visualisation. The algorithm extends the LinLog [32] and FR algorithm [2]. Its authors proposed a revised

attractive force based on the LinLog model [32] and defined as follows:

 𝐹𝑎(𝑛1, 𝑛2) = 𝑙𝑜𝑔(1 + 𝑑(𝑛1, 𝑛2)) (8)

where 𝑑 is the distance between nodes 𝑛1 and 𝑛2. Moreover, a degree-dependent repulsion model was proposed

in the FA2 algorithm to reduce the repulsive forces. This repulsion model increases the chances of lower-than-

average-degree nodes connecting to higher-than-average-degree nodes.

 𝐹𝑟(𝑛1, 𝑛2) = 𝑘 ×
(𝑑𝑒𝑔(𝑛1) + 1) × (𝑑𝑒𝑔(𝑛2) + 1)

𝑑(𝑛1, 𝑛2)
 (9)

where 𝑘 is a constant of ideal pairwise distance, as used in the FR algorithm [2], 𝑑 is the distance between nodes

𝑛1 and 𝑛2 and 𝑑𝑒𝑔(𝑛) is the number of edges associated with the node 𝑛, including in- and out-degree edges. In

addition, the FA2 algorithm also uses gravitational force and strong gravitational force. Jacomy et al. [22]

concluded that strong gravitational force may be useful only for specific types of networks. The definition of

these gravitational and strong gravitational forces are defined as follows, respectively:

 𝐹𝑔(𝑛) = 𝑘 × (𝑑𝑒𝑔(𝑛) + 1) (10)

 𝐹𝑠𝑔(𝑛) = 𝑘 × (𝑑𝑒𝑔(𝑛) + 1) × 𝑑(𝑛) (11)

2.1.2 Energy function minimisation model

In contrast to the accumulated force model, the energy function minimisation model uses the spring

system to minimise the difference between the visual distance and theoretical graphed distance, and this is

accomplished by solving (minimising) an energy function. They do not consider attractive and repulsive forces

separately, but rather in conjunction to minimise an energy function. That is, if the visual distance of a pair of

nodes is closer than their corresponding theoretical graphed distance, they repel each other; otherwise, they

attract each other. The Kamada-Kawai algorithm is the pioneering algorithm for energy function minimisation

models. The description of the Kamada-Kawai algorithm is given in section 2.1.2.1 and a technique to improve

the energy function minimisation model is summarised in section 2.1.2.2.

2.1.2.1 Kamada-Kawai algorithm

In the Kamada-Kawai (KK) algorithm [31], nodes are placed so that their visual distance within the

drawing is proportional to their theoretical graphed distance. As this goal cannot always be achieved for

arbitrary network topologies, the key idea behind the algorithm is to use a spring model in such a way that the

energy function of the network topology is minimised. The energy function E is:

 𝐸 = ∑ ∑
1

2
𝑘 , (|𝑝 − 𝑝 | − 𝑙 ,)

2
𝑛

 1

𝑛 1

 1

 (12)

where 𝑘 , is the stiffness of a spring between nodes 𝑖 and 𝑗, 𝑙 , is the ideal distance of a spring between nodes 𝑖

and 𝑗, and 𝑝 and 𝑝 are the visual positions of nodes 𝑖 and 𝑗, respectively. That is, the KK algorithm finds a

visual position for each pair of nodes 𝑖 and 𝑗, and their Euclidean distance is proportional to 𝑙 , . Here, the KK

algorithm defines a diameter matrix that stores theoretical graphed distances (𝑑 ,) of the nodes. 𝑑 , , which

represents the hop count between nodes 𝑖 and 𝑗. 𝑑 , is the shortest hop count between nodes 𝑖 and 𝑗. The ideal

distance of a spring (𝑙 ,) between nodes 𝑖 and 𝑗 is defined as follows:

 𝑙 , =
 0
𝑑 ,

𝑚𝑎 × 𝑑 , (13)

where 0 is the side length of the drawing frame and 𝑑 ,
𝑚𝑎 is the diameter of the network topology. Moreover,

the stiffness of a spring between nodes 𝑖 and 𝑗 is calculated as follows:

 𝑘 , =

𝑑 ,
2 (14)

where is a scaling and 𝑑 , represents the theoretical graphed distances of nodes 𝑖 and 𝑗. The KK algorithm

then seeks a visual position for every node 𝑣 in the network topology and tries to decrease the energy function in

the whole network. That is, the KK algorithm calculates the partial derivatives for all of the nodes in the network

topology in terms of every 𝑥𝑣 and 𝑦𝑣 that are zero (i.e.,
𝜕𝐸

𝜕 𝑣
= 0 𝑎𝑛𝑑

𝜕𝐸

𝜕𝑦𝑣
= 0, 𝑓𝑜𝑟 1 ≤ 𝑣 < 𝑛). However, solving

all of these non-linear equations simultaneously is unfeasible because they are dependent on one another.

Therefore, an iterative approach can be used to solve the equation based on the Newton-Raphson method. At

each iteration, the algorithm chooses a node 𝑚 that has the largest maximum change (∆𝑚). In other words, the

node 𝑚 is moved to the new position, where it can reach a lower level of ∆𝑚 than prior. Meanwhile, the other

nodes remain fixed. The maximum change (∆𝑚) is calculated as follows:

 ∆𝑚= √(
 𝐸

 𝑥𝑚
)
2

+ (
 𝐸

 𝑦𝑚
)
2

 (15)

2.1.2.2 Stress majorisation optimisation

In force-directed algorithms such as the KK algorithm [31], visual distance is proportional to the

theoretical graphed distance. Stress majorisation optimisation [201-203] is a technique to minimise energy

function via majorisation. This technique improves the visual drawing of network topologies iteratively. The

principle of majorisation optimisation is to construct a sequence of quadratic forms in which each iteration binds

the stress function. The stress function then monotonically decreases (never increases) with every iteration. Thus,

a lower value for the energy function is achieved in the same running time [203]. Unlike the KK algorithm, then,

the stress function optimised via majorisation is guaranteed to converge [7]. Stress majorisation optimisation is

useful for large and clustered networks, especially for applications to social information visualisation [204, 205].

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:11

2.1.3 Combinatorial optimisation model

Combinatorial optimisation models are probabilistic algorithms, often inspired by evolutionary

mechanisms. Simulated annealing, differential evolution and genetic algorithms use a number of measures to

improve a candidate solution and to optimise a problem iteratively. Although these algorithms share many

similar properties, they still have distinctive features, including population determination, strategies to search the

solution state space, etc. [206].

2.1.3.1 Davidson-Harel algorithm

The process of simulated annealing is inspired by the physical cooling process of molten materials.

Molten steel will crack and form bubbles that make it brittle if cooled too quickly. The steel must therefore be

cooled evenly for a better result — a process known as annealing in metallurgy [7, 207, 208]. The Davidson-

Harel (DH) algorithm [29] uses a simulation of the annealing process to prevent nodes from moving too close to

non-adjacent edges and to minimise edge crossings. An energy value 𝐸, attraction force 𝑓𝑎 and repulsion force

𝑓𝑟 are used in the simulation. The energy value (𝐸) is the sum of all attraction forces (𝑓𝑎) and repulsion forces

(𝑓𝑟) which can be calculated as follows:

 𝐸 = ∑ ∑ 𝑓𝑎 (√(𝑥 − 𝑥)
2
+ (𝑦 − 𝑦)

2
) + 𝑓𝑟 (√(𝑥 − 𝑥)

2
+ (𝑦 − 𝑦)

2
)

𝑛

 1

𝑛 1

 1

 (16)

 A node 𝑖 is randomly selected from the network on initialisation. The DH algorithm then creates a

temporary node 𝑗, and assigns a position to the node based on the position of node 𝑖. Therefore, a new energy

value 𝐸′ can be calculated using the position of node 𝑗 and other nodes within the network.

 𝐸′ = ∑ 𝑓𝑎 (√(𝑥𝑣 − 𝑥)
2
+ (𝑦𝑣 − 𝑦)

2
) + 𝑓𝑟 (√(𝑥𝑣 − 𝑥)

2
+ (𝑦𝑣 − 𝑦)

2
)

𝑣, ∈𝑉, ∉𝑉,𝑣≠

 (17)

 Moreover, the DH algorithm obeys the rules of the Boltzmann distribution when the liquid is cooled

slowly [209]. If 𝐸′ − 𝐸 ≤ 0, then 𝐸′ is used as the energy of the next iteration, as 𝐸′ has lower energy value. If

𝐸′ − 𝐸 > 0, a probability equation is used to determine whether to use the new energy 𝐸′ in the next iteration.

The probability equation is defined as follows:

𝑝 = 𝑒

(𝐸′ 𝐸)
𝑘×𝑇 (18)

where 𝑇 is the temperature variable and 𝑘 is the Boltzmann constant. If the probability 𝑝 is less than the

threshold 𝜑, then the new energy 𝐸′ is accepted; otherwise, the old energy 𝐸 will be used in the next iteration.

2.1.3.2 Kudelka algorithm

The Kudelka algorithm [210] is a force-directed algorithm that aims to find a low-dimensional

representation of the high-dimensional network. This allows the high-dimensional network to be visualised in

low-dimensional (e.g. two- or three-) space. Sammon‘s mapping [211] and the differential evolution method are

used in the Kudelka algorithm. Differential evolution is a population-based optimiser. It evolves a population of

real encoded vectors in which the initial values of vectors are randomly chosen from within a predefined range.

Differential evolution generates new vectors and operations using the real encoding of candidates. As a result,

new vectors are perturbed and scaled from the existing vectors of the population. The objective of the Kudelka

algorithm is to minimise the projection error function 𝐸, which is defined as follows:

 𝐸 =
1

∑ 𝑑
∗𝑚

∑
(𝑑

∗ − 𝑑)
2

𝑑
∗

𝑚

(

19)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA

where 𝑑
∗ is the distance between 𝑋 and 𝑌 . The distance between corresponding vector 𝑌 and 𝑌 in lower

dimensional space is denoted as 𝑑 .

2.2 HYBRID FORCE-DIRECTED ALGORITHMS

Several studies have used heuristic techniques to improve the performance of force-directed algorithms

and reduce execution time, enabling the algorithms to visualise large and complex networks in an efficient

manner. For example, the multilevel technique simplifies networks through network abstraction processes.

Distributed force-directed algorithms use parallel computing and hardware acceleration to reduce execution time

for parsing large networks. The multidimensional scaling technique is useful for visualising networks‘

meaningful underlying dimensions. State-of-the-art studies of these heuristics are discussed and summarised in

the following sections.

2.2.1 Parallel and hardware accelerated force-directed algorithms

The major principle of parallel computing is to solve a computational problem using multiple resources

simultaneously [212, 213]. Generally, parallel computing involves the following steps:

1. A computational problem is first broken into smaller pieces of executable content that can be solved

concurrently.

2. Each piece of executable content will be further broken down into a series of instructions for the

Central Processing Unit (CPU) or Graphics Processing Unit (GPU).

3. Instructions from every piece of executable content are executed simultaneously on different CPU or

GPU.

4. An overall coordination mechanism is used. When a task has completed the execution of instructions, it

sends an acknowledgment to the coordinator before sending the result to the receiving task.

Most parallel computing frameworks [214-216] for force-directed algorithms are based on the

accumulated force model. For example, the GPU parallel computing framework [217] was proposed for

identifying the k-nearest neighbours, the results of which were then utilised to speed up the FR algorithm [2]. A

distributed force-directed algorithm in an open source distributed computing framework called Giraph1 [218]

was implemented in Amazon‘s cloud computing infrastructure PaaS (Platform as a Service) [219]. Arleo et al.

[218] claimed that the algorithm can process networks with up to million edges. A parallel FR algorithm [2]

based on Open Computing Language (OpenCL) was proposed by Krijnen [220] and Wang et al. [221]. OpenCL

programs can be executed across heterogeneous platforms with modern CPUs, GPUs, and microprocessor

designs [222]. There are also parallel force-directed algorithms [223-225] based on the Message Passing

Interface (MPI). MPI is defined by a group of parallel computing vendors and applications specialists
2
 as a

specification for a standard library for message passing in distributed computing.

2.2.2 Multilevel force-directed algorithms

The multilevel technique for force-directed algorithms involves concepts from network abstraction and

can be divided into two main phases. In the first phase, called ‗coarsening‘, the original network is split into a

sequence of coarse networks with decreasing sizes. This simplifies the combinatorial structure of the network by

selecting the coalescent pairs of adjacent nodes to construct a new network. The selection process is repeated

recursively to abstract a sequence of such coarse networks. The process of energy optimisation (minimisation) is

then performed across these coarse networks such that they are optimised using the global properties from the

original network. The second phase is called refinement and involves successive drawings of fine networks

1 http://giraph.apache.org/
2 http://mpi-forum.org/

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:13

computed from the smallest coarse networks. Finer networks are optimised using the locally determined

properties from the related coarse network. As a result, it can decrease running time because the energy

minimisation process considers only a small amount of neighbourhoods at once [226]. Many studies have

proposed using the multilevel technique for force-directed algorithms [227-230]. There are also studies that

extend the multilevel technique to the classical force-directed algorithms such as multilevel KK algorithm [30]

and multilevel FR algorithm [24].

2.2.3 Force-directed algorithms with multidimensional scaling

High-dimensional data usually have a large number of variables instead of a large number of duplicated

records. The multidimensional scaling technique is widely used in force-directed algorithms for high-

dimensional data reduction. The objective of the multidimensional scaling technique is to find meaningful

underlying dimensions so that observed similarities and dissimilarities from the investigated networks can be

discerned easily. The principle behind multidimensional scaling was developed by Torgerson [231] which uses

the distance of edges as a metric. Nodes are projected into a smaller space that satisfies the constraint of the

metric (the distance of edges). Many studies have adopted multidimensional scaling for force-directed

algorithms to visualise high-dimensional data in which the distances between pairs of data are preserved [201,

232-239]. Multidimensional scaling is also useful for energy function minimisation modelling, as it can improve

the layout of networks with high-degree nodes. Dwyer et al. [240] and Dzwinel et al. [241] proposed a

multidimensional scaling KK algorithm [31] with the use of stress majorisation optimisation. The energy

function proposed by Dzwinel et al. [241] is defined as follows:

 𝐸 = 𝑘𝑛𝑛∑(∑ 𝑑
𝑛 2

𝑛𝑛

 ∈𝑂𝑛𝑛()

+ 𝑐 × ∑ (1 − 𝑑 𝑘
𝑛)2

𝑟𝑛

𝑘∈𝑂𝑟𝑛()

)

𝑁

(

20)

where 𝑘𝑛𝑛 and c are constants and configured by users. 𝑑
𝑛 is the distance of node 𝑖 and 𝑗 in the visual drawing.

𝑂𝑛𝑛(𝑖) is the nearest neighbourhood of node 𝑖 (i.e. hop count equals to 1). 𝑂𝑟𝑛(𝑖) is the random neighbourhood

of node 𝑖 (i.e. hop count greater than 1).

3 APPLICATIONS OF FORCE-DIRECTED ALGORITHMS

This section reviews five categories of application domains in which force-directed algorithms have

been adopted: (a) aesthetic drawings for general networks, (b) component placement and scheduling in high-

level synthesis of very-large scale integration (VLSI) circuits design, (c) information visualisation, (d) biological

network visualisation, and (e) node placement and localisation in sensor networks.

3.1 FORCE-DIRECTED ALGORITHMS IN AESTHETIC DRAWINGS FOR GENERAL

NETWORKS

Force-directed algorithms can be used to produce schematic drawings from network topology alone,

even without additional information about its nodes and edges. However, many applications of force-directed

algorithms involve an implicit aesthetic problem in how to schematise topological renderings. The importance of

such schematics is that its depiction can significantly influence how the topology is understood. For example,

what are the aesthetic properties of the most coherent schematics? How can the aesthetic quality of schematics

be measured? To understand these questions, we need to clarify the characteristics and objectives of a schematic.

The fundamental factor is its layout. For example, in the polyline drawing (see Figure 5 (a)), each edge is a

polygonal chain. Whereas in the straight-line drawing (see Figure 5 (b)), each edge is a straight-line segment. In

the orthogonal drawing (see Figure 5 (c)) [8], each edge represents a horizontal and vertical segment. Numerous

visualisation tools have been implemented for visualising networks in different layouts, most developed for

straight-line drawing, such as GraphED3 [12], COMAIDE [13], LayoutShow [14], Graphael [15] and OpenOrd

[16]. A visualisation tool based on orthogonal drawing is also proposed in [17].

Figure 5 (a) Polyline drawing (b) Straight-line drawing (c) Orthogonal drawing

Creating aesthetically appealing schematics has the practical aim of revealing a structure‘s pattern,

rather than being merely a quest for the beautiful [18]. Therefore, researchers have defined the properties of a

schematic based on its fundamental factors. Force-directed algorithms can be used to produce schematics that

adhere to the properties of aesthetic drawing [9, 19, 20]. The properties of aesthetic drawing include : 1) edge

lengths should be uniform; 2) the number of edge crossings should be minimised; 3) the size of crossing angles

should be uniform; 4) the crossing angle should be minimised; 5) the standard deviation of edge length should

be low; 6) the angle formed by any two neighbouring edges should be minimised; 7) the number of bends in

polyline edges should be minimised; 8) nodes and edges should be affixed to an orthogonal drawing; and 9) the

network should be represented as symmetrically as possible. In [21], Tunkelang proposed a force-directed

approach for drawing undirected graphs. It is based on the accumulated force model that includes repulsive and

attractive forces. Repulsive forces are computed between any two nodes and attractive forces are calculated

between two adjacent nodes. Repulsion among nodes are used to avoid situations where nodes are placed too

close to each other. Attraction forces are used to prevent nodes from being too far away from each other.

According to the principles of the accumulated force model [22], nodes pull far away from each other if they are

not adjacent. Besides, the model tries to maintain uniform edge lengths among adjacent nodes to minimise edge

crossings. The repulsive and attractive forces of the proposed algorithm are defined as follows:

 𝑓𝑟(𝑑) =
𝑤𝑟

𝑑2
 (21)

 𝑓𝑎(𝑑) = 𝑤𝑎𝑑 (22)

where 𝑑 is the length of edge and 𝑤𝑟 and 𝑤𝑎 are constants. The objective of the algorithm is to find an optimal

value 𝑑 so that the sum of attractive and repulsive forces (i.e. 𝑓𝑟(𝑑) + 𝑓𝑎(𝑑)) is minimal. In addition, a force-

directed algorithm was also proposed to produce schematics based on the fitness function of a genetic algorithm

(GA) [23]. A number of studies have adopted similar approaches in the literature. Due to the page limit, we

summarise them in terms of the models used and the property of the aesthetic drawing in Table 1.

Table 1 Forced-directed algorithms for aesthetic visual drawings. C
atalo

g
u

e

Property of aesthetic drawing

Adopted by

proposed force-

directed

algorithms

Models used in force-directed

algorithms

N
o

d

e

Distribute nodes evenly [2], [22], [24], Accumulated force model

3 http://www3.cs.stonybrook.edu/~algorith/implement/graphed/implement.shtml

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:15

[25], [26], [27],

[28]

[29] Combinatorial optimisation model

[30]
Energy function minimisation model

with a multiscale approach

[31] Energy function minimisation model

[23]
Energy function minimisation model

with a fitness function in GA

Cluster similar nodes [32] Energy function minimisation model

Nodes should not overlap [33] Accumulated force model

Nodes that are not adjacent should be far

away from each other

[21] Accumulated force model

[29] Combinatorial optimisation model E
d

g
e

Minimise edge crossings

[2], [21], [22],

[24], [26], [27],

[28], [34]

Accumulated force model

[29] Combinatorial optimisation model

[35] Multilevel force-directed algorithm

[36], [37] Energy function minimisation model

Minimise edge bends [35] Multilevel force-directed algorithm

Keep edge lengths uniform

[2], [21], [22], [24] Accumulated force model

[31] Energy function minimisation model

[23]

Energy function minimisation model

with an additional fitness function of

genetic algorithm

[30],
Energy function minimisation model

with a multiscale approach

Minimise edge length

[28] Accumulated force model

[23]

Energy function minimisation model

with an additional fitness function of

genetic algorithm

O
v

er

all

lay
o

u
t

Display of symmetries [25], [26] Accumulated force model

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjwm-3bqbDVAhVFF5QKHdGBD_AQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCombinatorial_optimization&usg=AFQjCNELeqA3SoBGfD4h9Z1W2aMsxuHIaA

[31], [37] Energy function minimisation model

[30]
Energy function minimisation model

with a multiscale approach

[23]

Energy function minimisation model

with an additional fitness function of

genetic algorithm

Maximise the angles among incident edges

[28], [38] Accumulated force model

[35] Multilevel force-directed algorithm

[36] Energy function minimisation model

[23]

Energy function minimisation model

with an additional fitness function of

genetic algorithm

[39]

The angles between edges incident on the

same node should be as uniform as possible

[28], [39] Accumulated force model

[36] Energy function minimisation model

[23]

Energy function minimisation model

with an additional fitness function of

genetic algorithm

Orthogonality [17], [40]

Accumulated force model with an

additional octilinear magnetic force

[41] for orthogonal drawing

Minimise the size of visual drawing [37] Energy function minimisation model

3.2 FORCE-DIRECTED ALGORITHM IN COMPONENT PLACEMENT AND SCHEDULING IN

VLSI CIRCUITS DESIGN

 Technical Terms such as ‗module‘, ‗cell‘, ‗pin‘ and ‗component‘ are widely used in the studies of very-

large-scale integration (VLSI) circuits. They are similar to the concept of nodes in graph theory. To make the

terms consistent in this survey, we use the term ‗node‘. Force-directed placement algorithms and force-directed

scheduling are widely used in the design and manufacturing for VLSI circuits. An example of components from

a VLSI circuit board is illustrated in Figure 6 (a) (generated by the visual5602 simulator [42]). The roadmap and

approaches for these techniques are discussed in the following subsections.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:17

(a) (b)

Figure 6 Visualisations of (a) components of a VLSI circuit (b) a clustered network.

3.2.1 Force-directed placement algorithms

The nodes in VLSI circuits can be integrated circuits, transistors, resistors and capacitors. The

interconnection topology of the VLSI circuits is known. The objective of force-directed placement algorithms in

this context is to determine the optimal location of every node with respect to every other node such that the

length of edges in the interconnection topology is minimised [43]. Force-directed placement algorithms can

obtain fairly non-overlapping placements on circuit boards without the use of additional means of optimisation

[44] and, as such, have proven popular in applications to VLSI circuit boards since the 1960s [45-51].

3.2.1.1 Pioneer approaches

 Fisk and Isett [45] pioneered a system called ACCEL using two forces (i.e. attractive and repulsive

forces) for the placement of nodes. Urban et al. [47] proposed a system called SHARPCLAW using similar

forces [45]. Quinn and Breuer [46] and Quinn Jr [43] proposed similar systems based on Hooke‘s Law, with

repulsive and attractive defined as follows:

𝐹𝑟(𝑢, 𝑣) = −

 𝑟

√
(𝑥𝑢 − 𝑥𝑣)

2

(𝑤𝑢 − 𝑤𝑣)
2 +

(𝑦𝑢 − 𝑦𝑣)
2

(𝑕𝑢 − 𝑕𝑣)
2

(23)

 𝐹𝑎(𝑢, 𝑣) = − 𝑎√
(𝑥𝑢 − 𝑥𝑣)

2

(𝑤𝑢 − 𝑤𝑣)
2
+
(𝑦𝑢 − 𝑦𝑣)

2

(𝑕𝑢 − 𝑕𝑣)
2
 (24)

where 𝑟 and 𝑎 are the constants for repulsive and attraction forces, 𝑥𝑢 , 𝑦𝑢 are the 𝑥 -coordinate and 𝑦 -

coordinate of the node 𝑢. 𝑤𝑢 and 𝑕𝑢 are the width and height of the node 𝑢.

3.2.1.2 Modern approaches

 Numerous notable force-directed placement algorithms and open-source systems have been developed

since the 1990s. Most are based on solving a quadratic cost function to optimise node placement and achieve

minimal edge lengths on the circuit board [52]. Force-directed relaxation methods are often used to solve the

quadratic cost function. Force-directed relaxation is an iterative method in which nodes are either assigned

random or fixed locations on initiation. One node is then selected at each iteration and moved to a target point

determined by the forces or cost functions defined in the force-directed placement algorithms [53]. Popular

algorithms include Kraftwerk [54], Kraftwerk2 [55], FAR [56], mFAR [57], FDP [58, 59], FastPlace [60],

FastPlace 3.0 [61], RQL [62], SimPL [63], etc., the objective of which is to evenly distribute electromechanical

components (nodes) on the circuit board, minimise the wire (edge) length and produce an overlap-free layout

[64]. For example, the Kraftwerk [54] algorithm formulates the quadratic cost function 𝐹 defined as follows:

 𝐹 = ∑
1

2
𝑢,𝑣∈𝑉

(𝑤𝑢𝑣, × (𝑥𝑢 − 𝑥𝑣)
2 + 𝑤𝑢𝑣,𝑦 × (𝑦𝑢 − 𝑦𝑣)

2) (25)

where 𝑥𝑢 and 𝑦𝑢 are 𝑥 -coordinate and 𝑦 -coordinate of node 𝑢 . 𝑤𝑢𝑣, is the weight of edge 𝑢𝑣 on 𝑥 -axis

(horizontal), 𝑤𝑢𝑣, is the weight of edge uv on 𝑦-axis (vertical). The weight used in the 𝑥-axis and 𝑦-axis from

equation (25) is different because the node (electromechanical component) placed on the VLSI circuit board is

quadrilateral. We also found several extensions of the Kraftwerk algorithm [54] proposed for application in

VLSI circuits [65-68]. A similar algorithm called FastPlace was proposed by Viswanathan and Chu [60].

FastPlace is also based on a force-directed relaxation precept that aims to evenly distribute nodes on the circuit

board. This can be done by minimising the cost function, which is similar to equation (25). In contrast to others,

Viswanathan and Chu [60] applied a post-processing technique called ‗cell shifting‘ to reallocate the positions of

nodes that overlap as a result of force-directed placement. Pan et al. [61] also proposed an improved extension

of the FastPlace algorithm, called FastPlace 3.0, which adopts a multilevel technique and uses congestion

constraints [69] to place nodes evenly.

3.2.1.3 Partitioning and clustering based approaches

 Goto [70] used a force-directed placement algorithm to divide nodes on the circuit board into two parts:

an initial placement and an iterative improvement [71]. Nodes have pre-assigned (fixed) positions in the initial

placement, and the force-directed algorithm calculates node locations during the improvement phase only. An

algorithm based on [70] was proposed by Chang [72]. The objective of the algorithm is to find optimal regions

on the circuit board to place nodes. The algorithm extends the median formulation proposed by [70] which

identifies optimal regions and then applies a force-directed algorithm to calculate nodal positions within each

optimal region. A force-directed placement algorithm based on clustering was also proposed by Odawara et al.

[73] in which ‗seed elements‘, such as CPU and ROM from the circuit board, are first identified. Nodes close to

seed elements are then grouped together to construct clusters. Finally, the relative position of each cluster is

calculated by the force-directed algorithm. A similar system adopted a clustering technique was suggested by

Alupoaei and Katkoori [74]. In Alupoaei‘s algorithm, clique partitioning heuristics [75] were used to cluster

nodes and a force-directed algorithm based on Hooke‘s Law [46] was used to determine node placement and to

minimise edge lengths on the circuit board. In [76], Vorwerk and Kennings [76] introduced a multilevel

clustering algorithm to extend the algorithm proposed by [59]. The Hybird First Choice [77] clustering method

was used in the Vorwerk and Kennings‘s algorithm in order to improve node placement.

3.2.1.4 Fixed-points and pseudo edges additional approaches

 The placement of standard cells is another major application in VLSI circuits. Standard cells function as

nodes with standard heights but varying widths. Numerous studies focus on the placement of standard cells. For

example, some have used the cost function from the Kraftwerk algorithm [54] to determine the placement of

standard cells [65]. Chou and Lin [78] located standard cells by adding additional pseudo-edges on the circuit

board. In this algorithm, critical paths on the circuit board are first identified. Pseudo-edges will then attach to

nodes that are close to critical paths to pull the position of nodes closer to the critical paths. All pseudo-edges are

removed when the placement is completed. In addition, Hu and Marek-Sadowska [56] introduced an algorithm

called FAR to add additional fixed-points (nodes). A fixed-point is a pseudo-node connected to a real node on a

circuit board. Three types of fixed points are defined by [56]: controlling fixed points are used to keep the

placement of a node unchanged, perturbing fixed points are used to disturb the current placement, and

constraining fixed points are used to restrict the movement of a node. In another example, a flat force-directed

placement algorithm called SimPL was proposed by Kim et al. [63] that does not rely on clustering. SimPL has a

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:19

range of variants [79-82], all of which adopt a top-down geometric partitioning method called a look-ahead

legaliser [83] to remove nodal overlap. SimPL‘s variants add fixed-points and pseudo-edges to produce even

nodal distributions, for which the concept of fixed-points and pseudo-edges are adopted from the FAR algorithm

[56]. In addition, a multilevel force-directed placement algorithm based on the energy function minimisation

model [65] and fixed-point addition [56] was proposed by Hu and Marek-Sadowska [57].

3.2.1.5 Heuristic and application domain dependent approaches

 Forbes [84] proposed a heuristic approach to accelerate the force-directed placement algorithm

proposed by Fisk and Isett [45]. The objective of the heuristics is to reduce the total number of iterations of the

force-directed placement algorithms. The movements of nodes during previous iterations are used to predict the

position of a node in one or more future iterations. Spindler et al. [55] proposed an extension called Kraftwerk2,

which is based on previous work [85]. The objective of the Kraftwerk2 algorithm is to balance the density of

nodes and reduce and/or prevent any unused area (free space) of circuit board (i.e. save the space of circuit

board). Two types of nodes are defined in the Kraftwerk2 algorithm. One has a fixed initial position (i.e. FN)

and the other does not (i.e. MN). Only positions of the MN need to be determined in the Kraftwerk2 algorithm.

Moreover, three forces are defined in the algorithm: Net Force 𝐹𝑉
𝑛𝑒𝑡, Move Force 𝐹𝑉,𝑢

𝑚𝑜𝑣𝑒 and Hold Force 𝐹𝑉
ℎ𝑜𝑙𝑑.

The force equation of the Kraftwerk2 algorithm is the sum of the three forces and defined as follows:

 𝐹 = 𝐹𝑉
𝑛𝑒𝑡 + 𝐹𝑉,𝑢

𝑚𝑜𝑣𝑒 + 𝐹𝑉
ℎ𝑜𝑙𝑑 (26)

The forces of the Kraftwerk2 algorithm use concepts from a generic supply and demand system [86]. Spindler et

al. [55] stated that the Net Force 𝐹𝑉
𝑛𝑒𝑡 is used to minimise edge length. However, nodes will overlap when the

edge length is too short. Therefore, Move Force 𝐹𝑉,𝑢
𝑚𝑜𝑣𝑒 and Hold Force 𝐹𝑉

ℎ𝑜𝑙𝑑 are added to the Kraftwerk2

algorithm to compensate the Net Force 𝐹𝑉
𝑛𝑒𝑡 as a way to reduce nodal overlap. Interested readers can refer to

Nam and Cong [86] for detailed definitions and explanations about the generic supply and demand system.

Heuristic approaches were also used for the placement of standard cells. A heuristic force-directed

algorithm for the placement of standard cells was proposed by Hur et al. [87]. Congestion removal heuristics

[69] are applied in Hur et al.‘s algorithm to remove nodal overlaps. Additionally, a force-directed placement

algorithm for determining the location of standard cells in 3D ICs (integrated circuits) away from high-

temperature areas was also introduced [88].

Floor-planning is an application in VLSI closely related to placement. The goal of floor-planning

algorithms [89, 90] is to develop a placement plan to decide topological proximity and the appropriate shapes

and orientations of each block. A placement algorithm using the maze searching technique [91] was proposed by

Mo et al. [92]. The algorithm was designed to minimise edge lengths on a circuit board. The maze searching

technique is able to find the shortest path from a given node to another given node. The approach proposed by

Mo et al. applies force-directed algorithms to the placement of nodes first and then uses the maze searching

technique to re-route paths (edges) on the circuit board and minimise edge lengths.

 Minimising the timing delay of circuits is another important task for VLSI. Force-directed placement

algorithms based on Kraftwerk [54] proposed by Rajagopal et al. [93] aim to optimise the edge lengths and

minimise the timing delay on the circuit board. A similar approach was proposed by Saxena and Halpin [94] to

optimise the timing delay of circuits, which improves the repeater insertion technique [95] by using a force-

directed approach based on Kraftwerk [54]. Repeater insertion techniques can reduce the time delay associated

with long wire lines in circuit. In addition, Goplen et al. [96] proposed an algorithm to reduce repetitions during

placement in which weightings [59] are used to reduce the repeater count. In [96], the cost function is adopted

from Goplen‘s algorithm [65].

Besides timing delay minimisations, density information can also be used to improve force-directed

placement algorithms [62, 97]. For example, improved versions of cell-shifting techniques were proposed by

Viswanathan et al. [62]. These techniques adopted a Density-Aware Module Spreading algorithm [98] and

extended the cost function of quadratic optimisation from [65] to improve the placement of nodes on circuit

boards. Viswanathan et al. [62] used the density information to prevent nodes from being placed on areas that

already contain high densities of edges and nodes.

 Mixed-size integrated circuit (IC) design, in which the network contains a large number of nodes and

macros, is also widely used in VLSI. In most cases, the magnitude (size) of macro force is larger than the size of

nodes [99]. For this reason, placement algorithms should use smoothing approaches to place both nodes and

macros on the chip areas simultaneously. A force-directed placement algorithm called FDP was proposed for the

placement of mixed-size integrated circuits [58, 59]. The algorithm uses a dynamic weighting [100] of spreading

forces. The cost function of FDP is defined as follows:

 𝐹 = ∑
𝑎𝑢𝑣

|𝑝𝑢
 1 − 𝑝𝑣

 1|
𝑢,𝑣∈𝑉

(𝑝𝑢
 − 𝑝𝑣

)2

(27)

where 𝑎𝑢𝑣 represents the weight of the edges connecting node 𝑢 and 𝑣. 𝑝𝑢
 and 𝑝𝑢

 1 are the position of node 𝑢 at

iteration 𝑖 and 𝑖 − 1, respectively. The objective of FDP algorithms is to minimise the cost function in equation

(27).

 Placement algorithms for 3D Field Programming Gate Array (FPGA) [101] consisting of multiple two-

dimensional layers have become popular in recent studies. A low temperature simulated annealing method [102]

can be used to determinate the final 3D layer from the two-dimensional layers. The latest 3D FPGA applications

can be found in force-directed algorithms, such as those using the force-directed placement algorithm to

minimise the edge lengths on each two-dimensional layer [103]. Integrating optical devices into the electronic

communication system NoC (Networks-on-Chip) [104] is one example. The PLATON algorithm is proposed by

[105] to place overlap-free Photonic Switching Elements (PSEs) on the circuit board. PSEs are components used

in optical networking.

3.2.2 Force-directed scheduling algorithms

Force-directed scheduling algorithms are useful in High Level VLSI Synthesis systems [106-109]. An

algorithm‘s description of a design behaviour can be interpreted by high-level synthesis [108]. For example, the

context of encoding algorithms can be interpreted by high-level synthesis such that the hardware

encoder/decoder algorithm can be implemented on integrated chips. Force-directed scheduling algorithms

schedule instructions and operations for high-level synthesis to optimise the distribution of operations and

reduce resource expenditure.

 The initial force-directed scheduling algorithm was first proposed by Paulin and Knight [110] and, like

other force-directed algorithms, it obeys Hooke‘s Law in physics. Paulin et al.‘s algorithm attempts to balance

the distribution of operations by decreasing concurrency of operations that make use of the same hardware

resources. In the initial version of force-directed scheduling for the behavioural synthesis, proposed in Paulin

and Knight [111], operations are divided into a number of steps, all of which aim at reducing the number of data

buses, storage units and functional units while maintaining the concurrent operations assigned to them without

lengthening the total execution time. Paulin and Knight [112] presented a force-directed scheduling algorithm to

minimise interconnected costs of register allocation in high-level synthesis. Variants and extensions based on

this pioneering work have been developed and reported in [113-122]. Classical scheduling has been used to

minimise resources by finding a feasible schedule 𝜏 that minimises the resource costs. The schedule of classical

scheduling is defined as follows:

 𝑓(𝜏) =∑𝑤𝑟

𝑟∈𝑅

𝑁𝑟(𝜏, 𝑡)𝑡∈𝑇
𝑚𝑎 (28

)

where 𝑅 is a set of resource types in which 𝑟 ∈ 𝑅. 𝑤𝑟 is the cost of a resource type 𝑟 and 𝑡 is the span of time

required of a schedule 𝜏. However, solving equation (28) is a NP-complete problem. Therefore, Verhaegh et al.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:21

[123] presented an iterative approach for the forced-directed scheduling algorithm used in PHIDEO [124]

silicon compilers. The cost function of their iterative approach is defined as follows:

 𝑓(𝑟) = ∑𝑤𝑟𝑢𝑟
𝑟∈𝑅

+∑𝑤𝑟 (𝑁𝑟(𝜏, 𝑡) − 𝑢𝑟)𝑡∈𝑇
𝑚𝑎

𝑟∈𝑅

 (29)

 𝑢𝑟 =
1

𝑚
|*𝑖 ∈ 𝛰|𝑟 ∈ 𝑟+| (30)

where 𝑢𝑟 is a constant based on the average number of operations for resource type 𝑟 over a schedule in which

𝑚 is the time span on a given schedule. 𝑤𝑟 is the cost for a resource type 𝑟. 𝑁𝑟(𝜏, 𝑡) is the number of operations

of resource type r scheduled at time t in schedule 𝜏 . The objective is to minimise the cost function 𝑓(𝑟) .

Verhaegh et al. [125] also presented an iterative force-directed scheduling algorithm which reduces the time

span of an entire operation schedule, as used in the silicon compiler PHIDEO [124].

 Behavioural synthesis systems are generally designed for single tasks. Lee et al. [114] proposed a

heuristic force-directed scheduling algorithm for multi-thread, real-time and multi-tasking synthesis systems.

Lee et al.‘s algorithm is based on the 𝐴∗ search technique and the force-directed scheduling algorithm proposed

by Paulin et al. [111]. Multi-tasking synthesis systems contain a set of 𝑘 processors and a set of 𝑛 periodic real-

time operations. The principle is to assign each operation to one of the processors in such a way that all

operations can be scheduled within their time constraints. Lee et al.‘s algorithm used the 𝐴∗ search technique to

select processors that minimise the cost and satisfy timing constraints. Moreover, Abdel-Kader [115] used a

force-directed scheduling algorithm derived from [111] to optimise loop scheduling in high-level synthesis.

Loop scheduling is designed for repetitively performing a set of operations that functions similar to a loop in

programming. Some extensions of [111] work were also proposed for reconfigurable architectures. For example,

a force-directed scheduling for schedule operations in NATURE [126] was proposed by Zhang et al. [116].

NATURE is a hybrid nano/CMOS reconfigurable architecture. Force-directed scheduling algorithms are also

useful for Dynamic Reconfigurable FPGAs (DRFPGAs) [117], owing to overlaps in the logic of DRFPGAs as

time-multiplexed. Because of this, DRFPGAs need to be partitioned into multiple sub-circuit boards, thus

possibly resulting in different execution times because sub-circuit boards are executed in parallel. Force-directed

scheduling algorithms can be used to partition sequential circuits to optimise feasible partitions that reduce the

logic and communication component costs while maintaining maximal throughput.

Force-directed scheduling algorithms for power optimisation problems in VLSI high-level synthesis

systems have been popular since 2000. These algorithms are based, again, on the work of [111]. For example,

some have used a force-directed scheduling algorithm to optimise power consumption while adhering to the

resource and latency constraints in a behavioural synthesis system [119]. Gupta and Katkoori [120] also used a

force-directed scheduling algorithm to optimise power consumption at the behavioural synthesis system. They

reduced the overall dynamic power by reducing switched capacitance component usage during VLSI circuit

design. Moreover, Allam and Ramanujam [121] proposed a force-directed scheduling algorithm for power

optimisation that minimises the peak and average consumption. This can be done by assigning the smallest

possible input voltage to every operation in a way that minimises power consumption.

Advanced driver assistance functions for intelligent automotive systems, such as predictive break

assistants, adaptive cruise control and adaptive lane assistance are designed for processing sensor data.

Schönwald et al. [122] proposed a force-directed scheduling algorithm for advanced drivers to map processes to

processor cores with time and resource constraints. The objective of this work is to reduce the communication

latency and increase the throughput to process sensor data. Similarly, Schönwald et al. [127] proposed a force-

directed scheduling algorithm to consider shared memory architectures during the mapping of software

processes on multiprocessor system-on-chip (MPSoC) cores. Schönwald et al. [127] suggested the use of

smFDM (shared memory aware force-directed mapping) to determine the placement of processor cores.

Therefore, communication conflicts and memory access conflicts are reduced or even avoided. Force-directed

scheduling algorithms were also proposed by Omnés et al. [118] to schedule real-time tasks to be executed on

embedded multimedia systems. The work in Sethuraman and Vemuri [128] used a force-directed scheduling

algorithm to optimise bandwidth in NoC (Networks-on-Chip) architecture by scheduling an optimal size

(dimension mesh) of the network circuit.

3.3 FORCE-DIRECTED ALGORITHMS IN INFORMATION VISUALISATION

The primary objective of network information visualisation is to explore hidden patterns in networks

and to visualise them in a simple manner. Information networks can be social networks, human relation

networks, networks of business workflow, transportation maps, etc. An example visualisation of a clustered

network is illustrated in Figure 6 (b) which is generated by using the vis.js visualisation tool [129]. The

application of information visualisation is wide and complex. It is therefore impossible to visualise networks in

orthogonal form or in a planar visual drawing in all cases. Moreover, certain information networks‘ nodes and

edges may contain additional properties (attributes). These properties do not exist in general networks. Because

of this, applications of information visualisation may use variant layouts to present the data. For example, metro

map diagramming is useful for visualising the transportation map as a schematic [40]. With fisheye views [130,

131], the network representation can enlarge regions located near specified nodes while contracting distant

regions by varying edge length. However, while enlarging a special region may be useful in two-dimensional

planes, it may not be applicable for high-dimensional data. Parallel coordinate diagramming can be used to

project high-dimensional data onto two dimensions [132]. Parallel coordinate diagrams draw 𝑛 vertical lines

equally spaced to represent the n-dimensional space. Corresponding nodes are drawn on the dimensional space

(vertical line) and the line represents the relation between a pair of nodes [133]. Lombardi-Style diagrams [134]

are useful for information visualisation in which the edges of the visual drawing are curvilinear [135].

 Even with these techniques, the amount of complexity makes visual interpretability for humans difficult.

Chae [136] suggested visualising large networks on a tiled monitor wall, in which monitors are placed next to

each other and data distribution related to their corresponding display nodes are only displayed. Edge crossing

deduction is also crucial for visualising information about large networks, as this makes the representation

appear cluttered and ugly. One example is the 1/4-SHPED (i.e. Symmetric Homogeneous Partial Edge Drawing),

as proposed by Bruckdorfer et al. [137]. Nodes of 1/4-SHPED are represented as points and edges as two pieces

(also called stubs) of a straight-line segment, each adjacent to a node, without any edge crossings, and with stub

size 1/4 of the total edge length. Edge bundling is another technique which group edges into bundles to decrease

the density of lines for reducing clutter [131-133]. Moreover, Debiasi et al. [33] proposed an accumulated force

model to visualise the network by geographical flow map [33] as a way to prevent edge crossings. Each flow

consists of start, intermediate and target nodes and three forces are defined in the proposed algorithm:

electrostatic (attractive) force, stress force and rejected (repulsive) force. The force equation of node 𝑣 is the

sum of the three forces and can be defined as follows:

 𝐹(𝑣) =∑ 𝐹𝑒(𝑣, 𝑠) +
𝑠∈𝑆

∑ 𝐹𝑟(𝑣, 𝑡) + 𝐹𝑠(𝑣)
𝑡∈𝑇

 (31)

where 𝑆 is the intermediate nodes interacting with node 𝑣. 𝑇 is the nodes near to the node 𝑣. The purpose of

electrostatic force (𝐹𝑒) is similar to attractive force, which is defined as follows:

 𝐹𝑒(𝑣, 𝑠) =
1

‖𝑣 − 𝑠‖
× 𝑣 − 𝑠̂ (32)

where 𝑣 − 𝑠̂ is the unit vector of node 𝑣 and 𝑠. ‖𝑣 − 𝑠‖ is the norm of node 𝑣 and 𝑠. Stress force enables the

node to move towards the flow with higher magnitude. The definition of stress force is as follows:

 𝐹𝑠(𝑣) = (𝑣 1 − 𝑣) + (𝑣 − 𝑣 1) (33)

where 𝑣 1 is the ancestor node of 𝑣 and 𝑣 1 is the child node of 𝑣. Rejected forces are used to avoid any

overlapping between intermediate and target nodes, and are defined as follows:

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:23

 𝐹𝑟(𝑣, 𝑡) = −1 × 𝐹𝑒(𝑣, 𝑠) (34)

There are approaches which utilize forces and reduce clutter for graph visualisation in which the size of

nodes in the graph is the variant. Cui et al. [134] used a force-directed model to visualise word clouds in which

the size of a word (i.e. each word represents a node) is determined by the word frequency in the time slot.

Moreover, Gu et al. [135] adopted the FR algorithm to visual large texts and image datasets on a large video

wall. We summarise the relevant studies on information visualisation, their objectives, and corresponding force-

directed algorithms used to visualise the networks in Table 2.

Table 2 Information visualisation studies that adopted force-directed algorithms.

Force-directed

algorithm adopted

by the study

Study Objective of the study

Eades‘s algorithm

[1]
- To visualise networks using tree-structured hierarchies

- Increase the readability of a network

[2] - To make edges conform to particular orientations

[3]
- To transform the Extensible Stylesheet Language Transformations

(XSLT) document to network layout. XSLT is a language for

transforming vector images and documents in the XML encoding

[4]
- To visualise networks with non-uniform nodes (i.e. the size and shape

of nodes are variant)

[5] - To visualise the relation of people in online social networks

[6] - To visualise networks using grid layouts

[7] - To visualise web traffic

FR algorithm

[8] - To visualise networks in which nodes have nontrivial sizes

[9]

- To produce visual drawings of hypergraphs

- Hypergraphs can be viewed as an extension of classical networks in

which an edge can join any number of vertices

[10]
- To visualise networks with non-uniform nodes (i.e. the size and shape

of nodes are variant)

[11] - To visualise exploration of network traffic over time

[12] - To visualise email networks

[13] - To visualise transportation networks

[14] - To visualise networks in which edges are curvilinear (Bézier curve)

[15]
- To visualise weighted networks in which each edge is associated with a

real number representing its importance

[16] - To assess homophily [17] in networks

[18] - To visualise the actors holding neutral opinion polarities

[19] - To visualise the volume of movement in flow maps

KK algorithm

[20]

- To show proximity between nodes such that their distances in the

visualisation reflect distances in the network

- topology

[21] - To visualise networks in which edges are curvilinear

[22] - To visualise the structure of ER diagram

[23]
- To visualise the count of paper submissions for journal articles of

natural and social sciences

[24] - To animate networks over time

Noack algorithm

[25]

[26]

- To visualise the land and water networks of port transportation

FA2 algorithm

[27]
[28]

- To visualise the transaction patterns of Bitcoin networks

Hachul algorithm

[29]
[30]

- To use 𝑘-dimensional trese (a data structure of space partitioning for

arranging nodes in a 𝑘-dimensional space) to visualise networks.

3.4 FORCE-DIRECTED ALGORITHMS IN BIOLOGICAL NETWORK VISUALISATION

Visualisation is an important way to capture the dependencies and interactions between different

biological entities, and their sequential processes. The force-directed algorithm is one of the most popular

approaches for the visualisation of biological networks. An example visualisation of a biological network is

illustrated in Figure 7 (a) (which is generated by using the NGL molecular visualisation viewer [167]).

Kerpedjiev et al. [168] developed a tool called 𝑓𝑜𝑟𝑛𝑎 to display the secondary structure of ribonucleic acid

(RNA). In addition, Bang et al. [169] and Tuikkala et al. [170] proposed multilevel force-directed algorithms to

visualise large protein networks and genetic interactions.

(a) (b)

Figure 7 An example visualisation of (a) a biological network, (b) sensor localisation.

Biological networks have more special attributes than average directed and undirected networks.

Because of this, various researchers have proposed special layouts for the visualisation of genetic sequencing or

other biological networks. Clustered layouts are commonly used to visualise protein interactions [171]. Gamma-

Clustering layouts were suggested for visualising large and complex biological networks [172]. Haplotype

layouts [173] were also used to distinguish relationships among different sequences observed in biological

networks [174]. There are also several studies that adopt force-directed algorithms to visualise the structure of

molecules, biological pathways, protein networks, etc. Due to the page limitation, we summarise these studies in

Table 3.

Table 3 Visualisation studies that adopted force-directed algorithms for biological networks.

Force-directed

algorithm adopted by

the study

Study Objective of the study

KK algorithm

[175] - To visualise protein–protein interaction network

[178] - To visualise protein–protein interaction network

[185]
- To visualise the structure of Alpha-helical transmembrane

proteins

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:25

FR algorithm

[176]
- To use Schlegel diagrams [177] to visualise the structure

of molecules

[179], [180], [181] - To visualise biological pathways

[182]
- To visualise the structure of genes

- Minimise edge-edge crossings

[183] - To visualise the structure of genes

[184] - To visualise microarrays

[186] - To visualise biological pathways

[187] - To analyse the connectivity patterns of brain parcellation

[172] - To visualise large biological networks

3.5 FORCE-DIRECTED ALGORITHMS IN NODE PLACEMENT AND LOCALISATION FOR

SENSOR NETWORKS

 Sensor networks are useful for monitoring animals, earthquakes and tsunamis [188], emergency

message forwarding during disasters [189], etc. An example visualisation of sensor localization is illustrated in

Figure 5 (b) (which is generated by using the OOMap service [190]). Because the exact location of the

networked sensors (nodes) is often unavailable, force-directed algorithms are used to determine node placement

or to locate boundaries to improve the network‘s coverage [191]. The strength of force is subject to the distance

between two nodes and each node behaves as a source of force. Therefore, if the distance between two nodes is

shorter/larger than a threshold, a repulsive/attractive force will be exerted on each other. If the distance is equal

to the threshold, no force will act upon the nodes. Extensions of the FR algorithm were proposed for node

placement in [192, 193]. There are also extensions based on a modified FR algorithm that estimate the

approximate location of each node based on signal information [194, 195]. In [196], Cheong and Si proposed a

heuristic KK algorithm for boundary detection. The proposed algorithm was optimised for sending emergency

messages via Mobile Ad Hoc network if cellular networks are corrupted. Nodes on the boundary are responsible

for forwarding emergency messages to nearly emergency stations.

4 CONCLUSIONS

In this paper, we present the survey of force-directed algorithms for schematic drawings and placement.

This class of algorithms has been studied and implemented in biological network visualisation, information

visualisation, sensor localisation and VLSI design. This survey covers classical force-directed algorithms and

hybrid force-directed algorithms, in which parallel, multilevel and multidimensional scaling techniques are used.

We also discussed the merits and deficiencies of force-directed algorithms and visualisation applications. For

example, how network topologies are drawn can significantly affect viewers‘ understanding of the network. We

also discussed the influences caused by the layout and position-assignment of visualised network nodes on how

a user perceives the relationships in the network. To this end, we review and categorise force-directed

algorithms from research areas such as: (a) aesthetic drawings for general networks, (b) component placement

and scheduling in high-level synthesis of very-large scale integration (VLSI) circuits design, (c) information

visualisation, (d) biological network visualisation, and (e) node placement and localisation for sensor networks.

Our hope is that this survey not only provides an overview of existing force-directed algorithms, but also

introduces them as effective tools for solving visualisation problems in different application areas.

REFERENCES

[1] J. S. Richardson, "Schematic drawings of protein structures," in Methods in enzymology, vol. 115: Elsevier, 1985,

pp. 359-380.

[2] T. M. J. Fruchterman and E. M. Reingold, "Graph drawing by force-directed placement," Software: Practice &

Experience, vol. 21, no. 11, pp. 1129 - 1164, 1991.

[3] I. ACM. (2018, September 1). ACM Digital Library. Available: https://dl.acm.org

[4] E. B.V. (2018, September 1). Scopus Preview. Available: https://www.scopus.com

[5] H. Gibson, J. Faith, and P. Vickers, "A survey of two-dimensional graph layout techniques for information

visualisation," Information visualization, vol. 12, no. 3-4, pp. 324-357, 2013.

[6] S. G. Kobourov, "Spring embedders and force directed graph drawing algorithms," arXiv preprint

arXiv:1201.3011, 2012.

[7] R. Tamassia, Handbook of graph drawing and visualization. CRC press, 2013.

[8] P. Eades and R. Tamassia, Algorithms for drawing graphs: an annotated bibliography. Department of Computer

Science, Brown University Providence, 1989.

[9] F. J. Brandenburg, M. Himsolt, and C. Rohrer, "An experimental comparison of force-directed and randomized

graph drawing algorithms," in International Symposium on Graph Drawing, 1995, pp. 76-87: Springer.

[10] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, "Algorithms for drawing graphs: an annotated

bibliography," Computational Geometry, vol. 4, no. 5, pp. 235-282, 1994.

[11] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph drawing: algorithms for the visualization of graphs.

Prentice Hall PTR, 1998.

[12] M. Himsolt, "GraphEd: A graphical platform for the implementation of graph algorithms (extended abstract and

demo)," in Graph Drawing, 1995, pp. 182-193: Springer.

[13] D. Dodson, "COMAIDE: Information visualization using cooperative 3D diagram layout," in International

Symposium on Graph Drawing, 1995, pp. 190-201: Springer.

[14] L. Behzadi, "LayoutShow: A signed applet/application for graph drawing and experimentation," in Graph Drawing,

1999, pp. 242-249: Springer.

[15] D. Forrester, S. G. Kobourov, A. Navabi, K. Wampler, and G. V. Yee, "Graphael: A System for Generalized

Force-Directed Layouts," in Graph drawing, 2004, pp. 454-464: Springer.

[16] S. Martin, W. M. Brown, R. Klavans, and K. W. Boyack, "OpenOrd: An open-source toolbox for large graph

layout," in Visualization and Data Analysis, 2011, p. 786806.

[17] J. Ignatowicz, "Drawing force-directed graphs using Optigraph," in International Symposium on Graph Drawing,

1995, pp. 333-336: Springer.

[18] C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch, "The aesthetics of graph visualization," Computational

aesthetics, vol. 2007, pp. 57-64, 2007.

[19] H. C. Purchase, "Effective information visualisation: a study of graph drawing aesthetics and algorithms,"

Interacting with computers, vol. 13, no. 2, pp. 147-162, 2000.

[20] M. Huang, W. Huang, and C.-C. Lin, "Evaluating force-directed algorithms with a new framework," in

Proceedings of the 27th Annual ACM Symposium on Applied Computing, 2012, pp. 1030-1032: ACM.

[21] D. Tunkelang, "A practical approach to drawing undirected graphs," DTIC Document1994.

[22] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, "ForceAtlas2, a Continuous Graph Layout Algorithm for

Handy Network Visualization Designed for the Gephi Software," PLoS ONE, vol. 9, no. 6, 2014.

[23] Q.-G. Zhang, H.-Y. Liu, W. Zhang, and Y.-J. Guo, "Drawing undirected graphs with genetic algorithms,"

Advances in Natural Computation, pp. 435-435, 2005.

[24] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, "A layout algorithm for undirected compound graphs,"

Information Sciences, vol. 179, no. 7, pp. 980-994, 2009.

[25] M. J. Bannister, D. Eppstein, M. T. Goodrich, and L. Trott, "Force-directed graph drawing using social gravity and

scaling," in Graph Drawing, 2013, vol. 7704, pp. 414-425.

[26] P. Eades, "A heuristic for graph drawing," Congressus numerantium, vol. 42, pp. 149 - 160, 1984.

[27] A. Frick, A. Ludwig, and H. Mehldau, "A fast adaptive layout algorithm for undirected graphs (extended abstract

and system demonstration)," in Graph Drawing, 1995, pp. 388-403: Springer.

[28] W. Huang, P. Eades, S.-H. Hong, and C.-C. Lin, "Improving multiple aesthetics produces better graph drawings,"

Journal of Visual Languages & Computing, vol. 24, no. 4, pp. 262-272, 2013.

[29] R. Davidson and D. Harel, "Drawing graphs nicely using simulated annealing," ACM Transactions on Graphics,

vol. 15, no. 4, pp. 301 - 331, 1996.

[30] D. Harel and Y. Koren, "A fast multi-scale method for drawing large graphs," Journal of graph algorithms and

applications, vol. 6, no. 3, pp. 179 - 202, 2001.

https://dl.acm.org/
https://www.scopus.com/

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:27

[31] T. Kamada and S. Kawai, "An algorithm for drawing general undirected graphs," Information Processing Letters,

vol. 31, no. 1, pp. 7 - 15, 1989.

[32] A. Noack, "Energy Models for Graph Clustering," J. Graph Algorithms Appl., vol. 11, no. 2, pp. 453-480, 2007.

[33] A. Debiasi, B. Simões, and R. De Amicis, "Force directed flow map layout," in Information Visualization Theory

and Applications (IVAPP), 2014 International Conference on, 2014, pp. 170-177: IEEE.

[34] F. Bertault, "A force-directed algorithm that preserves edge crossing properties," in Graph Drawing, 1999, pp.

351-358: Springer.

[35] W. Didimo, G. Liotta, and S. A. Romeo, "Topology-Driven Force-Directed Algorithms," in Graph drawing, 2010,

vol. 6502, pp. 165-176: Springer.

[36] W. Dong, X. Fu, G. Xu, and Y. Huang, "An improved force-directed graph layout algorithm based on aesthetic

criteria," Computing and Visualization in Science, vol. 16, no. 3, pp. 139-149, 2013.

[37] C. Papadopoulos and C. Voglis, "Untangling graphs representing spatial relationships driven by drawing

aesthetics," in Proceedings of the 17th Panhellenic Conference on Informatics, 2013, pp. 158-165: ACM.

[38] P. Eades, W. Huang, and S.-H. Hong, "A force-directed method for large crossing angle graph drawing," arXiv

preprint arXiv:1012.4559, 2010.

[39] E. N. Argyriou, M. A. Bekos, and A. Symvonis, "Maximizing the Total Resolution of Graphs," in Graph Drawing,

2010, pp. 62-67: Springer.

[40] D. Chivers and P. Rodgers, "Octilinear force-directed layout with mental map preservation for schematic

diagrams," in International Conference on Theory and Application of Diagrams, 2014, pp. 1-8: Springer.

[41] K. Sugiyama and K. Misue, "A simple and unified method for drawing graphs: Magnetic-spring algorithm," in

International Symposium on Graph Drawing, 1994, pp. 364-375: Springer.

[42] G. James, B. Silverman, and B. Silverman. (2018, September 6). Visual Transistor-level Simulation. Available:

http://www.visual6502.org

[43] N. R. Quinn Jr, "The placement problem as viewed from the physics of classical mechanics," in Papers on Twenty-

five years of electronic design automation, 1988, pp. 67-72: ACM.

[44] D. C. Wilson and R. J. Smith II, "An experimental comparison of force directed placement techniques," in

Proceedings of the 11th Design Automation Workshop, 1974, pp. 194-199: IEEE Press.

[45] C. J. Fisk and D. Isett, "―ACCEL‖ automated circuit card etching layout," in Proceedings of the SHARE design

automation project, 1965, pp. 9.1-9.31: ACM.

[46] N. Quinn and M. Breuer, "A forced directed component placement procedure for printed circuit boards," IEEE

Transactions on Circuits and systems, vol. 26, no. 6, pp. 377-388, 1979.

[47] S. J. Urban, N. C. Randall, and T. J. Harley, "System for Heuristic and Rapid Processing of Component Layout

and Wiring (SHARPCLAW)," in Proceedings of the 1971 26th annual conference, 1971, pp. 414-432: ACM.

[48] G. Wipfler, M. Wiesel, and D. A. Mlynski, "A combined force and cut algorithm for hierarchical VLSI layout," in

Proceedings of the 19th Design Automation Conference, 1982, pp. 671-677: IEEE Press.

[49] M. Hanan, P. K. Wolff, and B. J. Agule, "Some experimental results on placement techniques," in Papers on

Twenty-five years of electronic design automation, 1988, pp. 73-83: ACM.

[50] F. Johannes, K. M. Just, and K. J. Antreich, "On the force placement of logic arrays," in Proceedings of the 6th

European Conference on Cmcuit Theory and Design. pp, 1983, pp. 203-206.

[51] K. Antreich, F. Johannes, and F. Kirsch, "A new approach for solving the placement problem using force models,"

in Proceedings of the IEEE International Symposmm on C%-cuits and Systems. pp, 1982, pp. 481-486.

[52] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, "GORDIAN: VLSI placement by quadratic

programming and slicing optimization," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 10, no. 3, pp. 356-365, 1991.

[53] K. Shahookar and P. Mazumder, "VLSI cell placement techniques," ACM Computing Surveys (CSUR), vol. 23, no.

2, pp. 143-220, 1991.

[54] H. Eisenmann and F. M. Johannes, "Generic global placement and floorplanning," in Proceedings of the 35th

annual Design Automation Conference, 1998, pp. 269-274: ACM.

[55] P. Spindler, U. Schlichtmann, and F. M. Johannes, "Kraftwerk2—A fast force-directed quadratic placement

approach using an accurate net model," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 27, no. 8, pp. 1398-1411, 2008.

[56] B. Hu and M. Marek-Sadowska, "FAR: Fixed-points addition & relaxation based placement," in Proceedings of

the 2002 international symposium on Physical design, 2002, pp. 161-166: ACM.

[57] B. Hu and M. Marek-Sadowska, "Multilevel fixed-point-addition-based VLSI placement," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 8, pp. 1188-1203, 2005.

http://www.visual6502.org/

[58] A. Kennings and K. P. Vorwerk, "Force-directed methods for generic placement," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp. 2076-2087, 2006.

[59] K. Vorwerk, A. Kennings, and A. Vannelli, "Engineering details of a stable force-directed placer," in Proceedings

of the 2004 IEEE/ACM International conference on Computer-aided design, 2004, pp. 573-580: IEEE Computer

Society.

[60] N. Viswanathan and C.-N. Chu, "FastPlace: efficient analytical placement using cell shifting, iterative local

refinement, and a hybrid net model," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 24, no. 5, pp. 722-733, 2005.

[61] N. Viswanathan, M. Pan, and C. Chu, "FastPlace 3.0: A fast multilevel quadratic placement algorithm with

placement congestion control," in Proceedings of the 2007 Asia and South Pacific Design Automation Conference,

2007, pp. 135-140: IEEE Computer Society.

[62] N. Viswanathan, G.-J. Nam, C. J. Alpert, P. Villarrubia, H. Ren, and C. Chu, "RQL: Global placement via relaxed

quadratic spreading and linearization," in Proceedings of the 44th annual Design Automation Conference, 2007, pp.

453-458: ACM.

[63] M.-C. Kim, D.-J. Lee, and I. L. Markov, "SimPL: An effective placement algorithm," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 1, pp. 50-60, 2012.

[64] H. Eisenmann, "Force-Directed Placement of VLSI Circuits," in Proceedings of the 2015 Symposium on

International Symposium on Physical Design, 2015, pp. 131-132: ACM.

[65] B. Obermeier, H. Ranke, and F. M. Johannes, "Kraftwerk: a versatile placement approach," in Proceedings of the

2005 international symposium on Physical design, 2005, pp. 242-244: ACM.

[66] T. Chan, J. Cong, and K. Sze, "Multilevel generalized force-directed method for circuit placement," in Proceedings

of the 2005 international symposium on Physical design, 2005, pp. 185-192: ACM.

[67] T. F. Chan, J. Cong, M. Romesis, J. R. Shinnerl, K. Sze, and M. Xie, "mPL6: A robust multilevel mixed-size

placement engine," in Proceedings of the 2005 international symposium on Physical design, 2005, pp. 227-229:

ACM.

[68] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, "mPL6: enhanced multilevel mixed-size placement," in

Proceedings of the 2006 international symposium on Physical design, 2006, pp. 212-214: ACM.

[69] S. W. Hur and J. Lillis, "Mongrel: hybrid techniques for standard cell placement," in Proceedings of the 2000

IEEE/ACM international conference on Computer-aided design, 2000, pp. 165-170: IEEE Press.

[70] S. Goto, "An efficient algorithm for the two-dimensional placement problem in electrical circuit layout," IEEE

Transactions on Circuits and Systems, vol. 28, no. 1, pp. 12-18, 1981.

[71] S. Goto and T. Matsuda, "Partitioning, assignment and placement," Layout Design And Verification,‘T. Ohtsuki,

Ed. Elsevier North-Holland, New York, pp. 55-97, 1986.

[72] Y. W. Chang, "Generalized Force Directed Relaxation with Optimal Regions and Its Applications to Circuit

Placement," in Proceedings of the 2017 ACM on International Symposium on Physical Design, 2017, pp. 115-120:

ACM.

[73] G. Odawara, K. Iijima, and K. Wakabayashi, "Knowledge-based placement technique for printed wiring boards,"

in Proceedings of the 22nd ACM/IEEE Design Automation Conference, 1985, pp. 616-622: IEEE Press.

[74] S. Alupoaei and S. Katkoori, "Net clustering based macrocell placement," in Proceedings of the 2002 Asia and

South Pacific Design Automation Conference, 2002, p. 399: IEEE Computer Society.

[75] C.-J. Tseng and D. P. Siewiorek, "Facet: A procedure for the automated synthesis of digital systems," in

Proceedings of the 20th Design Automation Conference, 1983, pp. 490-496: IEEE Press.

[76] K. Vorwerk and A. Kennings, "An improved multi-level framework for force-directed placement," in Proceedings

of the conference on Design, Automation and Test in Europe-Volume 2, 2005, pp. 902-907: IEEE Computer

Society.

[77] J. J. Cong and J. R. Shinnerl, Multilevel optimization in VLSICAD. Springer Science & Business Media, 2013.

[78] Y.-C. Chou and Y.-L. Lin, "A performance-driven standard-cell placer based on a modified force-directed

algorithm," in Proceedings of the 2001 international symposium on Physical design, 2001, pp. 24-29: ACM.

[79] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, "A SimPLR method for routability-driven placement," in

Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on, 2011, pp. 67-73: IEEE.

[80] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji, "MAPLE: multilevel adaptive placement for

mixed-size designs," in Proceedings of the 2012 ACM international symposium on International Symposium on

Physical Design, 2012, pp. 193-200: ACM.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:29

[81] U. Brenner, M. Struzyna, and J. Vygen, "BonnPlace: Placement of leading-edge chips by advanced combinatorial

algorithms," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 9, pp.

1607-1620, 2008.

[82] U. Brenner, A. Hermann, N. Hoppmann, and P. Ochsendorf, "BonnPlace: A self-stabilizing placement

framework," in Proceedings of the 2015 Symposium on International Symposium on Physical Design, 2015, pp. 9-

16: ACM.

[83] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, "NTUplace3: An analytical placer for large-

scale mixed-size designs with preplaced blocks and density constraints," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1228-1240, 2008.

[84] R. Forbes, "Heuristic acceleration of force-directed placement," in Proceedings of the 24th ACM/IEEE Design

Automation Conference, 1987, pp. 735-740: ACM.

[85] P. Spindler and F. M. Johannes, "Fast and robust quadratic placement combined with an exact linear net model," in

Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design, 2006, pp. 179-186: ACM.

[86] G.-J. Nam and J. J. Cong, Modern circuit placement: best practices and results. Springer Science & Business

Media, 2007.

[87] S.-W. Hur et al., "Force directed mongrel with physical net constraints," in Proceedings of the 40th annual Design

Automation Conference, 2003, pp. 214-219: ACM.

[88] B. Goplen and S. Sapatnekar, "Efficient thermal placement of standard cells in 3D ICs using a force directed

approach," in Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, 2003, p. 86:

IEEE Computer Society.

[89] D. R. Brasen and M. L. Bushnell, "MHERTZ: A new optimization algorithm for floorplanning and global routing,"

in Proceedings of the 27th ACM/IEEE Design Automation Conference, 1991, pp. 107-110: ACM.

[90] H. Youssef, S. M. Sait, and K. J. Al-Farra, "Timing influenced force directed floorplanning," in Proceedings of the

conference on European design automation, 1995, pp. 156-161: IEEE Computer Society Press.

[91] M. H. Arnold and W. S. Scott, "An interactive maze router with hints," in Proceedings of the 25th ACM/IEEE

Design Automation Conference, 1988, pp. 672-676: IEEE Computer Society Press.

[92] F. Mo, A. Tabbara, and R. K. Brayton, "A force-directed maze router," in Computer Aided Design, 2001. ICCAD

2001. IEEE/ACM International Conference on, 2001, pp. 404-407: IEEE.

[93] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, and B. Halpin, "Timing driven force directed

placement with physical net constraints," in Proceedings of the 2003 international symposium on Physical design,

2003, pp. 60-66: ACM.

[94] P. Saxena and B. Halpin, "Modeling repeaters explicitly within analytical placement," in Proceedings of the 41st

annual Design Automation Conference, 2004, pp. 699-704: ACM.

[95] Y. I. Ismail and E. G. Friedman, "Effects of inductance on the propagation delay and repeater insertion in VLSI

circuits," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 2, pp. 195-206, 2000.

[96] B. Goplen, P. Saxena, and S. Sapatnekar, "Net weighting to reduce repeater counts during placement," in

Proceedings of the 42nd annual Design Automation Conference, 2005, pp. 503-508: ACM.

[97] J. Cong, G. Luo, and E. Radke, "Highly efficient gradient computation for density-constrained analytical

placement," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 12, pp.

2133-2144, 2008.

[98] H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia, "Diffusion-based placement migration," in Proceedings of the

42nd annual Design Automation Conference, 2005, pp. 515-520: ACM.

[99] K. Tsota, C.-K. Koh, and V. Balakrishnan, "A Mixed-size Placer based on Dimension Adjustment."

[100] G. Sigl, K. Doll, and F. M. Johannes, "Analytical placement: A linear or a quadratic objective function?," in

Proceedings of the 28th ACM/IEEE Design Automation Conference, 1991, pp. 427-432: ACM.

[101] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-programmable gate arrays. Springer Science &

Business Media, 2012.

[102] C. Ababei et al., "Placement and routing in 3D integrated circuits," IEEE Design & Test of Computers, vol. 22, no.

6, pp. 520-531, 2005.

[103] W. Sui, S. Dong, and J. Bian, "Wirelength-driven force-directed 3D FPGA placement," in Proceedings of the 20th

symposium on Great lakes symposium on VLSI, 2010, pp. 435-440: ACM.

[104] S. Kumar et al., "A network on chip architecture and design methodology," in VLSI, 2002. Proceedings. IEEE

Computer Society Annual Symposium on, 2002, pp. 117-124: IEEE.

[105] A. von Beuningen and U. Schlichtmann, "Platon: A force-directed placement algorithm for 3d optical networks-

on-chip," in Proceedings of the 2016 on International Symposium on Physical Design, 2016, pp. 27-34: ACM.

[106] L. Stock and R. van der Born, "EASY: multiprocessor architecture optimization," in Workshop logic and

architecture synthesis for silicon compilers, 1988.

[107] W. Verhaegh, "Scheduling problems in video signal processing," Master's thesis. Eindhoven Univ. of Technol.,

Eindhoven, The Netherlands, 1990.

[108] R. Camposano and W. Wolf, High-level VLSI synthesis. Springer Science & Business Media, 2012.

[109] G. Wang, W. Gong, and R. Kastner, "Instruction scheduling using MAX-MIN ant system optimization," in

Proceedings of the 15th ACM Great Lakes symposium on VLSI, 2005, pp. 44-49: ACM.

[110] P. G. Paulin and J. P. Knight, "Force-directed scheduling in automatic data path synthesis," in Proceedings of the

24th ACM/IEEE Design Automation Conference, 1987, pp. 195-202: ACM.

[111] P. G. Paulin and J. P. Knight, "Force-directed scheduling for the behavioral synthesis of ASICs," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 6, pp. 661-679, 1989.

[112] P. G. Paulin and J. P. Knight, "Scheduling and binding algorithms for high-level synthesis," in Design Automation,

1989. 26th Conference on, 1989, pp. 1-6: IEEE.

[113] R. J. Cloutier and D. E. Thomas, "The combination of scheduling, allocation, and mapping in a single algorithm,"

in Proceedings of the 27th ACM/IEEE Design Automation Conference, 1991, pp. 71-76: ACM.

[114] C. Lee, M. Potkonjak, and W. Wolf, "System-level synthesis of application specific systems using A* search and

generalized force-directed heuristics," in Proceedings of the 9th international symposium on System synthesis,

1996, p. 2: IEEE Computer Society.

[115] R. F. Abdel-Kader, "Resource-constrained loop scheduling in high-level synthesis," in Proceedings of the 43rd

annual Southeast regional conference-Volume 2, 2005, pp. 195-200: ACM.

[116] W. Zhang, L. Shang, and N. K. Jha, "NanoMap: An integrated design optimization flow for a hybrid

nanotube/CMOS dynamically reconfigurable architecture," in Proceedings of the 44th annual Design Automation

Conference, 2007, pp. 300-305: ACM.

[117] D. Chang and M. Marek-Sadowska, "Partitioning sequential circuits on dynamically reconfigurable FPGAs," IEEE

Transactions on Computers, vol. 48, no. 6, pp. 565-578, 1999.

[118] T. J.-F. Omnés, T. Franzetti, and F. Catthoor, "Interactive co-design of high throughput embedded multimedia," in

Proceedings of the 37th Annual Design Automation Conference, 2000, pp. 328-331: ACM.

[119] S. Katkoori and R. Vemuri, "Scheduling for low power under resource and latency constraints," in Circuits and

Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, 2000, vol. 2, pp.

53-56: IEEE.

[120] S. Gupta and S. Katkoori, "Force-directed scheduling for dynamic power optimization," in VLSI, 2002.

Proceedings. IEEE Computer Society Annual Symposium on, 2002, pp. 75-80: IEEE.

[121] A. Allam and J. Ramanujam, "Modified force-directed scheduling for peak and average power optimization using

multiple supply-voltages," in Integrated Circuit Design and Technology, 2006. ICICDT'06. 2006 IEEE

International Conference on, 2006, pp. 1-5: IEEE.

[122] T. Schönwald, A. Viehl, O. Bringmann, and W. Rosenstiel, "Optimized software mapping for advanced driver

assistance systems," in Industrial Embedded Systems (SIES), 2012 7th IEEE International Symposium on, 2012, pp.

181-190: IEEE.

[123] W. F. Verhaegh, E. H. Aarts, J. H. Korst, and P. E. Lippens, "Improved force-directed scheduling," in Design

Automation. EDAC., Proceedings of the European Conference on, 1991, pp. 430-435: IEEE.

[124] P. E. Lippens et al., "PHIDEO: a silicon compiler for high speed algorithms," in Proceedings of the conference on

European design automation, 1991, pp. 436-441: IEEE Computer Society Press.

[125] W. F. Verhaegh, P. E. Lippens, E. H. Aarts, J. H. Korst, A. van der Werf, and J. L. van Meerbergen, "Efficiency

improvements for force-directed scheduling," in Proceedings of the 1992 IEEE/ACM international conference on

Computer-aided design, 1992, pp. 286-291: IEEE Computer Society Press.

[126] W. Zhang, N. K. Jha, and L. Shang, "NATURE: A hybrid nanotube/CMOS dynamically reconfigurable

architecture," in Design Automation Conference, 2006 43rd ACM/IEEE, 2006, pp. 711-716: IEEE.

[127] T. Schönwald, A. Viehl, O. Bringmann, and W. Rosenstiel, "Shared memory aware MPSoC software deployment,"

in Proceedings of the Conference on Design, Automation and Test in Europe, 2013, pp. 1771-1776: EDA

Consortium.

[128] B. Sethuraman and R. Vemuri, "A force-directed approach for fast generation of efficient multi-port NoC

architectures," in VLSI Design, 2007. Held jointly with 6th International Conference on Embedded Systems., 20th

International Conference on, 2007, pp. 419-426: IEEE.

[129] A. B.V. (2017, September 9). vis.js. Available: http://www.visjs.org

http://www.visjs.org/

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:31

[130] J. Nagumo and J. Tanaka, "Introducing the fisheye view into graph drawing algorithm," Systems and Computers in

Japan, vol. 32, no. 12, pp. 60-66, 2001.

[131] G. W. Furnas, "The FISHEYE view: A new look at structured files," Bell Laboratories Technical

Memorandum1981.

[132] R. Walker, P. A. Legg, S. Pop, Z. Geng, R. S. Laramee, and J. C. Roberts, "Force-directed parallel coordinates," in

Information Visualisation (IV), 2013 17th International Conference, 2013, pp. 36-44: IEEE.

[133] A. Inselberg and B. Dimsdale, "Parallel coordinates: a tool for visualizing multi-dimensional geometry.(1990),"

DOI: http://dx. doi. org/10.1109/VISUAL, 1990.

[134] M. Lombardi and R. C. Hobbs, Mark Lombardi: Global Networks. Independent Curators, 2003.

[135] R. Chernobelskiy, K. I. Cunningham, M. T. Goodrich, S. G. Kobourov, and L. Trott, "Force-directed lombardi-

style graph drawing," in Graph Drawing, 2011, vol. 7034, pp. 320-331: Springer.

[136] S. Chae, "Distributed graph visualization on tiled displays," in Proc. of SPIE Vol, 2013, vol. 8768, pp. 87687K-1.

[137] T. Bruckdorfer, M. Kaufmann, and A. Lauer, "A practical approach for 1/4-shpeds," in Information, Intelligence,

Systems and Applications (IISA), 2015 6th International Conference on, 2015, pp. 1-6: IEEE.

[138] J. Barnes and P. Hut, "A hierarchical O (N log N) force-calculation algorithm," nature, vol. 324, no. 6096, pp. 446-

449, 1986.

[139] K. Sugiyama and K. Misue, "Graph drawing by the magnetic spring model," Journal of Visual Languages &

Computing, vol. 6, no. 3, pp. 217-231, 1995.

[140] X. Wang and I. Miyamoto, "Generating customized layouts," in Graph Drawing, 1996, pp. 504-515: Springer.

[141] J. D. Cohen, "Drawing graphs to convey proximity: An incremental arrangement method," ACM Transactions on

Computer-Human Interaction (TOCHI), vol. 4, no. 3, pp. 197-229, 1997.

[142] F. Bertault and P. Eades, "Drawing hypergraphs in the subset standard (short demo paper)," in Graph Drawing,

2001, pp. 45-76: Springer.

[143] D. Harel and Y. Koren, "Drawing graphs with non-uniform vertices," in Proceedings of the Working Conference

on Advanced Visual Interfaces, 2002, pp. 157-166: ACM.

[144] J.-H. Chuang, C.-C. Lin, and H.-C. Yen, "Drawing graphs with nonuniform nodes using potential fields," in Graph

Drawing, 2003, vol. 2912, pp. 460-465: Springer.

[145] N. Churcher, W. Irwin, and C. Cook, "Inhomogeneous force-directed layout algorithms in the visualisation

pipeline: From layouts to visualisations," in Proceedings of the 2004 Australasian symposium on Information

Visualisation-Volume 35, 2004, pp. 43-51: Australian Computer Society, Inc.

[146] B. Finkel and R. Tamassia, "Curvilinear Graph Drawing Using the Force-Directed Method," in Graph Drawing,

2004, vol. 3383, pp. 448-453: Springer.

[147] Y. Tzitzikas and J.-L. Hainaut, "How to tame a very large ER diagram (using link analysis and force-directed

drawing algorithms)," ER, vol. 3716, pp. 144-159, 2005.

[148] K. W. Boyack, R. Klavans, and K. Börner, "Mapping the backbone of science," Scientometrics, vol. 64, no. 3, pp.

351-374, 2005.

[149] J. Heer and D. Boyd, "Vizster: Visualizing online social networks," in Information Visualization, 2005. INFOVIS

2005. IEEE Symposium on, 2005, pp. 32-39: IEEE.

[150] S. Bender-deMoll and D. A. McFarland, "The art and science of dynamic network visualization," Journal of Social

Structure, vol. 7, no. 2, pp. 1-38, 2006.

[151] U. Lauther, "Multipole-based force approximation revisited–a simple but fast implementation using a dynamized

enclosing-circle-enhanced kd-tree," in International Symposium on Graph Drawing, 2006, pp. 20-29: Springer.

[152] S. Hachul, "A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs," Universität zu Köln, 2002.

[153] F. Mansman, L. Meier, and D. A. Keim, "Visualization of host behavior for network security," in VizSEC 2007:

Springer, 2008, pp. 187-202.

[154] X. Wang, X. Zhou, W. Lana, and S. Wu, "An improved graph drawing algorithm for email networks," in Asian

Control Conference, 2009. ASCC 2009. 7th, 2009, pp. 1667-1672: IEEE.

[155] U. Brandes, G. Shubina, R. Tamassia, and D. Wagner, "Fast layout methods for timetable graphs," in International

Symposium on Graph Drawing, 2000, pp. 127-138: Springer.

[156] W. Didimo, G. Liotta, and S. A. Romeo, "A Graph Drawing Application to Web Site Traffic Analysis," J. Graph

Algorithms Appl., vol. 15, no. 2, pp. 229-251, 2011.

[157] M. Fink, H. Haverkort, M. Nöllenburg, M. Roberts, J. Schuhmann, and A. Wolff, "Drawing metro maps using

Bézier curves," in International Symposium on Graph Drawing, 2012, pp. 463-474: Springer.

[158] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow, "Incremental Grid-Like Layout Using Soft and Hard

Constraints," in Graph Drawing, 2013, pp. 448-459.

http://dx/

[159] J. Hua, M. L. Huang, and Q. V. Nguyen, "Drawing large weighted graphs using clustered force-directed

algorithm," in Information Visualisation (IV), 2014 18th International Conference on, 2014, pp. 13-17: IEEE.

[160] W. Meulemans and A. Schulz, "A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams," in

International Symposium on Graph Drawing and Network Visualization, 2015, pp. 489-501: Springer.

[161] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a feather: Homophily in social networks," Annual

review of sociology, vol. 27, no. 1, pp. 415-444, 2001.

[162] X. Du, Y. Ye, Y. Raymond, K. Lau, Y. Li, and X. Huang, "Multi-opinion Ring: visualizing and predicting multiple

opinion orientations in online social media," Multimedia Tools and Applications, vol. 75, no. 12, p. 7159, 2016.

[163] G. Yan and L. Huang, "Research on Visualization of Port Transportation Network based on Force Directed

Model," in WHICEB, 2016, p. 52.

[164] A. Noack, "Modularity clustering is force-directed layout," Physical Review E, vol. 79, no. 2, p. 026102, 2009.

[165] D. McGinn, D. Birch, D. Akroyd, M. Molina-Solana, Y. Guo, and W. J. Knottenbelt, "Visualizing dynamic Bitcoin

transaction patterns," Big data, vol. 4, no. 2, pp. 109-119, 2016.

[166] B. Jenny et al., "Force-directed layout of origin-destination flow maps," International Journal of Geographical

Information Science, pp. 1-20, 2017.

[167] A. S. Rose, A. R. Bradley, Y. Valasatava, J. M. Duarte, A. Prlić, and P. W. Rose, "Web-based molecular graphics

for large complexes," in Proceedings of the 21st international conference on Web3D technology, 2016, pp. 185-

186: ACM.

[168] P. Kerpedjiev, S. Hammer, and I. L. Hofacker, "Forna (force-directed RNA): Simple and effective online RNA

secondary structure diagrams," Bioinformatics, vol. 31, no. 20, pp. 3377-3379, 2015.

[169] S. Bang, J. Choi, J. Park, and S.-J. Park, "A hub-protein based visualization of large protein-protein interaction

networks," in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International

Conference of the IEEE, 2007, pp. 1217-1220: IEEE.

[170] J. Tuikkala, H. Vähämaa, P. Salmela, O. S. Nevalainen, and T. Aittokallio, "A multilevel layout algorithm for

visualizing physical and genetic interaction networks, with emphasis on their modular organization," BioData

mining, vol. 5, no. 1, p. 2, 2012.

[171] D. C. Fung, M. R. Wilkins, D. Hart, and S. H. Hong, "Using the clustered circular layout as an informative method

for visualizing protein–protein interaction networks," Proteomics, vol. 10, no. 14, pp. 2723-2727, 2010.

[172] T. Hruz et al., "A multilevel gamma-clustering layout algorithm for visualization of biological networks,"

Advances in bioinformatics, vol. 2013, 2013.

[173] T. Jansen et al., "Mitochondrial DNA and the origins of the domestic horse," Proceedings of the National Academy

of Sciences, vol. 99, no. 16, pp. 10905-10910, 2002.

[174] A. Teacher and D. Griffiths, "HapStar: automated haplotype network layout and visualization," Molecular Ecology

Resources, vol. 11, no. 1, pp. 151-153, 2011.

[175] W. Basalaj and K. Eilbeck, "Straight-line drawings of protein interactions," in Graph Drawing, 1999, pp. 259-266:

Springer.

[176] T. Pisanski, B. Plestenjak, and A. Graovac, "NiceGraph Program and its applications in chemistry," Croatica

Chemica Acta, vol. 68, no. 1, pp. 283-292, 1995.

[177] R. Hoppe and J. Köhler, "SCHLEGEL projections and SCHLEGEL diagrams-new ways to describe and discuss

solid state compounds," Zeitschrift für Kristallographie-Crystalline Materials, vol. 183, no. 1-4, pp. 77-112, 1988.

[178] C. Friedrich and F. Schreiber, "Visualisation and navigation methods for typed protein-protein interaction

networks," Applied bioinformatics, vol. 2, pp. S19-S24, 2003.

[179] B. Genc and U. Dogrusoz, "A constrained, force-directed layout algorithm for biological pathways," in

International Symposium on Graph Drawing, 2003, pp. 314-319: Springer.

[180] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, "A compound graph layout algorithm for biological

pathways," in International Symposium on Graph Drawing, 2004, pp. 442-447: Springer.

[181] B. Genç and U. Dogrusoz, "A layout algorithm for signaling pathways," Information Sciences, vol. 176, no. 2, pp.

135-149, 2006.

[182] K. Kojima, M. Nagasaki, E. Jeong, M. Kato, and S. Miyano, "An efficient grid layout algorithm for biological

networks utilizing various biological attributes," BMC bioinformatics, vol. 8, no. 1, p. 76, 2007.

[183] R. Santamaría, R. Therón, and L. Quintales, "BicOverlapper: a tool for bicluster visualization," Bioinformatics, vol.

24, no. 9, pp. 1212-1213, 2008.

[184] R. Santamaría, R. Therón, and L. Quintales, "A visual analytics approach for understanding biclustering results

from microarray data," BMC bioinformatics, vol. 9, no. 1, p. 247, 2008.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:33

[185] T. Nugent and D. T. Jones, "Predicting transmembrane helix packing arrangements using residue contacts and a

force-directed algorithm," PLoS computational biology, vol. 6, no. 3, p. e1000714, 2010.

[186] J.-J. Tsay, B.-L. Wu, and Y.-S. Jeng, "Hierarchically organized layout for visualization of biochemical pathways,"

Artificial intelligence in medicine, vol. 48, no. 2, pp. 107-117, 2010.

[187] A. Crippa, L. Cerliani, L. Nanetti, and J. B. Roerdink, "Heuristics for connectivity-based brain parcellation of

SMA/pre-SMA through force-directed graph layout," Neuroimage, vol. 54, no. 3, pp. 2176-2184, 2011.

[188] I. F. Akyildiz, "A survey on sensor networks," presented at the IEEE Communications Magazine, 2002.

[189] S.-H. Cheong, K.-I. Lee, Y.-W. Si, and L. H. U, "Lifeline: Emergency Ad Hoc Network," presented at the

Computational Intelligence and Security (CIS), 2011 Seventh International Conference on, Hainan, 2011.

[190] O. O‘Brien. (2018, September 6). Bike Share Map. Available: http://bikes.oobrien.com

[191] M. Mauve, J. Widmer, and H. Hartenstein, "A survey on position-based routing in mobile ad hoc networks," IEEE

network, vol. 15, no. 6, pp. 30-39, 2001.

[192] X. Wang, S. Wang, and J.-J. Ma, "An improved co-evolutionary particle swarm optimization for wireless sensor

networks with dynamic deployment," Sensors, vol. 7, no. 3, pp. 354-370, 2007.

[193] J. Ma, Q. Liu, and W. Xie, "An Improved Virtual Force-Directed Particle Swarm Optimization Positioning

Algorithm," International Journal of Control and Automation, vol. 9, no. 5, pp. 1-10, 2016.

[194] Z. F. Islam, M. Romanuik, S. S. Heydari, and M. Salmanian, "OLSR-based coarse localization in tactical MANET

situational awareness systems," in Communications (ICC), 2012 IEEE International Conference on, 2012, pp.

6494-6498: IEEE.

[195] A. Efrat, D. Forrester, A. Iyer, S. G. Kobourov, C. Erten, and O. Kilic, "Force-directed approaches to sensor

localization," ACM Transactions on Sensor Networks, vol. 7, no. 3, p. 27, 2010, Art. no. 27.

[196] S.-H. Cheong and Y.-W. Si, "Accelerating the Kamada-Kawai algorithm for boundary detection in a mobile ad hoc

network," ACM Transactions on Sensor Networks, vol. 13, no. 1, 2016, Art. no. 3.

[197] W. T. Tutte, "How to draw a graph," Proceedings of the London Mathematical Society, vol. 3, no. 1, pp. 743-767,

1963.

[198] W. T. Tutte, "Convex representations of graphs," Proceedings of the London Mathematical Society, vol. 3, no. 1,

pp. 304-320, 1960.

[199] L. Sundström, "A Force Directed Placement Method Including Angular Resolution and Bond Overlap," ed, 2016.

[200] R. Hooke, "1678, Lectures de potentia restitutiva, or of spring explaining the power of springing bodies," Printed

for John Martyn printer to the Royal Society, Bell in St. Paul’s church-yard, 1931.

[201] E. R. Gansner, Y. Koren, and S. North, "Graph drawing by stress majorization," in International Symposium on

Graph Drawing, 2004, pp. 239-250: Springer.

[202] Y. Koren and A. Civril, "The Binary Stress Model for Graph Drawing," in Graph Drawing, 2008, pp. 193-205:

Springer.

[203] T. Dwyer, Y. Koren, and K. Marriott, "Constrained graph layout by stress majorization and gradient projection,"

Discrete Mathematics, vol. 309, no. 7, pp. 1895-1908, 2009.

[204] L. Chen and A. Buja, "Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing,"

Journal of Machine Learning Research, vol. 14, no. Apr, pp. 1145-1173, 2013.

[205] Y.-J. Ko and H.-C. Yen, "Drawing clustered graphs using stress majorization and force-directed placements," in

Information Visualisation (IV), 2016 20th International Conference, 2016, pp. 69-74: IEEE.

[206] H. Youssef, S. M. Sait, and H. Adiche, "Evolutionary algorithms, simulated annealing and tabu search: a

comparative study," Engineering Applications of Artificial Intelligence, vol. 14, no. 2, pp. 167-181, 2001.

[207] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by

fast computing machines," The journal of chemical physics, vol. 21, no. 6, pp. 1087-1092, 1953.

[208] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," science, vol. 220, no. 4598,

pp. 671-680, 1983.

[209] A. Dekkers and E. Aarts, "Global optimization and simulated annealing," Mathematical Programming, vol. 50, no.

1-3, pp. 367-393, 1991.

[210] M. Kudelka, P. Kromer, M. Radvansky, Z. Horak, and V. Snasel, "Efficient visualization of social networks based

on modified Sammon׳ s mapping," Swarm and Evolutionary Computation, vol. 25, pp. 63-71, 2015.

[211] J. W. Sammon, "A nonlinear mapping for data structure analysis," IEEE Transactions on computers, vol. 100, no.

5, pp. 401-409, 1969.

[212] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel computing: design and analysis of

algorithms. Benjamin/Cummings Redwood City, 1994.

[213] M. J. Quinn, Parallel computing: theory and practice. McGraw-Hill, Inc., 1994.

http://bikes.oobrien.com/

[214] J. Zhong and B. He, "GViewer: GPU-accelerated graph visualization and mining," Social Informatics, pp. 304-307,

2011.

[215] A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart, "Rapid multipole graph drawing on the GPU," in

International Symposium on Graph Drawing, 2008, pp. 90-101: Springer.

[216] D. Zhu, K. Wu, D. Guo, and Y. Chen, "Parallelized force-directed edge bundling on the GPU," in Distributed

Computing and Applications to Business, Engineering & Science (DCABES), 2012 11th International Symposium

on, 2012, pp. 52-56: IEEE.

[217] V. Uher, P. Gajdo, and V. Snáel, "The Visualization of Large Graphs Accelerated by the Parallel Nearest

Neighbors Algorithm," in Multimedia Big Data (BigMM), 2016 IEEE Second International Conference on, 2016,

pp. 9-16: IEEE.

[218] A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani, "Large graph visualizations using a distributed computing

platform," Information Sciences, vol. 381, pp. 124-141, 2017.

[219] B. P. Rimal, E. Choi, and I. Lumb, "A Taxonomy and Survey of Cloud Computing Systems," NCM, vol. 9, pp. 44-

51, 2009.

[220] G. Krijnen, "Accelerating Fruchterman-Reingold with OpenCL," 2014.

[221] Y.-X. Wang, Z.-Z. Li, L. Yao, W. Cao, and Z.-H. Wang, "Two improved GPU acceleration strategies for force-

directed graph layout," in Computer Application and System Modeling (ICCASM), 2010 International Conference

on, 2010, vol. 13, pp. V13-132-V13-136: IEEE.

[222] J. E. Stone, D. Gohara, and G. Shi, "OpenCL: A parallel programming standard for heterogeneous computing

systems," Computing in science & engineering, vol. 12, no. 3, pp. 66-73, 2010.

[223] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance, portable implementation of the MPI message

passing interface standard," Parallel computing, vol. 22, no. 6, pp. 789-828, 1996.

[224] C. Mueller, D. P. Gregor, and A. Lumsdaine, "Distributed Force-Directed Graph Layout and Visualization,"

EGPGV, vol. 6, pp. 83-90, 2006.

[225] A. Tikhonova and K.-L. Ma, "A scalable parallel force-directed graph layout algorithm," in Proceedings of the 8th

Eurographics conference on Parallel Graphics and Visualization, 2008, pp. 25-32: Eurographics Association.

[226] R. Hadany and D. Harel, "A multi-scale algorithm for drawing graphs nicely," Discrete Applied Mathematics, vol.

113, no. 1, pp. 3-21, 2001.

[227] C. Walshaw, "A multilevel algorithm for force-directed graph drawing," presented at the International Symposium

on Graph Drawing, 2000.

[228] S. Hachul and M. Jünger, "Drawing large graphs with a potential-field-based multilevel algorithm," in

International Symposium on Graph Drawing, 2004, pp. 285-295: Springer.

[229] C. Crawford, C. Walshaw, and A. Soper, "A multilevel force-directed graph drawing algorithm using multilevel

global force approximation," in Information Visualisation (IV), 2012 16th International Conference on, 2012, pp.

454-459: IEEE.

[230] F. G. Toosi and N. S. Nikolov, "Vertex-neighboring multilevel force-directed graph drawing," in Systems, Man,

and Cybernetics (SMC), 2016 IEEE International Conference on, 2016, pp. 002996-003001: IEEE.

[231] W. S. Torgerson, "Multidimensional scaling: I. Theory and method," Psychometrika, vol. 17, no. 4, pp. 401-419,

1952.

[232] T. Sano, "Automatically undirected graph drawing method with consideration of graph structure," Systems and

computers in Japan, vol. 28, no. 12, pp. 33-42, 1997.

[233] D. Harel and Y. Koren, "Graph drawing by high-dimensional embedding," J. Graph Algorithms Appl., vol. 8, no. 2,

pp. 195-214, 2004.

[234] T. Dwyer, Y. Koren, and K. Marriott, "Stress majorization with orthogonal ordering constraints," in International

Symposium on Graph Drawing, 2005, pp. 141-152: Springer.

[235] M. Chalmers, "A linear iteration time layout algorithm for visualising high-dimensional data," in Proceedings of

the 7th conference on Visualization'96, 1996, pp. 127-ff.: IEEE Computer Society Press.

[236] Y. Koren, L. Carmel, and D. Harel, "ACE: A fast multiscale eigenvectors computation for drawing huge graphs,"

in Information Visualization, 2002. INFOVIS 2002. IEEE Symposium on, 2002, pp. 137-144: IEEE.

[237] S. Lespinats, M. Verleysen, A. Giron, and B. Fertil, "DD-HDS: A method for visualization and exploration of

high-dimensional data," IEEE transactions on Neural Networks, vol. 18, no. 5, pp. 1265-1279, 2007.

[238] L. Chen and A. Buja, "Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and

proximity analysis," Journal of the American Statistical Association, vol. 104, no. 485, pp. 209-219, 2009.

[239] P. Gajer, M. Goodrich, and S. Kobourov, "A multi-dimensional approach to force-directed layouts of large

graphs," in Graph Drawing, 2001, pp. 211-221: Springer.

 Force-directed algorithms for schematic drawings and placement: a Survey • 39:35

[240] T. Dwyer, K. Marriott, and M. Wybrow, "Integrating edge routing into force-directed layout," in International

Symposium on Graph Drawing, 2006, pp. 8-19: Springer.

[241] W. Dzwinel, R. Wcisło, and W. Czech, "ivga: A fast force-directed method for interactive visualization of complex

networks," Journal of Computational Science, 2016.

APPENDIX

Figure 8 paper submission count of force-directed algorithms classified by application fields.

